Files
Hotel-Booking/Backend/venv/lib/python3.12/site-packages/pydantic/dataclasses.py
Iliyan Angelov 62c1fe5951 updates
2025-12-01 06:50:10 +02:00

414 lines
18 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""Provide an enhanced dataclass that performs validation."""
from __future__ import annotations as _annotations
import dataclasses
import functools
import sys
import types
from typing import TYPE_CHECKING, Any, Callable, Generic, Literal, NoReturn, TypeVar, overload
from warnings import warn
from typing_extensions import TypeGuard, dataclass_transform
from ._internal import _config, _decorators, _mock_val_ser, _namespace_utils, _typing_extra
from ._internal import _dataclasses as _pydantic_dataclasses
from ._migration import getattr_migration
from .config import ConfigDict
from .errors import PydanticUserError
from .fields import Field, FieldInfo, PrivateAttr
if TYPE_CHECKING:
from ._internal._dataclasses import PydanticDataclass
from ._internal._namespace_utils import MappingNamespace
__all__ = 'dataclass', 'rebuild_dataclass'
_T = TypeVar('_T')
if sys.version_info >= (3, 10):
@dataclass_transform(field_specifiers=(dataclasses.field, Field, PrivateAttr))
@overload
def dataclass(
*,
init: Literal[False] = False,
repr: bool = True,
eq: bool = True,
order: bool = False,
unsafe_hash: bool = False,
frozen: bool = False,
config: ConfigDict | type[object] | None = None,
validate_on_init: bool | None = None,
kw_only: bool = ...,
slots: bool = ...,
) -> Callable[[type[_T]], type[PydanticDataclass]]: # type: ignore
...
@dataclass_transform(field_specifiers=(dataclasses.field, Field, PrivateAttr))
@overload
def dataclass(
_cls: type[_T], # type: ignore
*,
init: Literal[False] = False,
repr: bool = True,
eq: bool = True,
order: bool = False,
unsafe_hash: bool = False,
frozen: bool | None = None,
config: ConfigDict | type[object] | None = None,
validate_on_init: bool | None = None,
kw_only: bool = ...,
slots: bool = ...,
) -> type[PydanticDataclass]: ...
else:
@dataclass_transform(field_specifiers=(dataclasses.field, Field, PrivateAttr))
@overload
def dataclass(
*,
init: Literal[False] = False,
repr: bool = True,
eq: bool = True,
order: bool = False,
unsafe_hash: bool = False,
frozen: bool | None = None,
config: ConfigDict | type[object] | None = None,
validate_on_init: bool | None = None,
) -> Callable[[type[_T]], type[PydanticDataclass]]: # type: ignore
...
@dataclass_transform(field_specifiers=(dataclasses.field, Field, PrivateAttr))
@overload
def dataclass(
_cls: type[_T], # type: ignore
*,
init: Literal[False] = False,
repr: bool = True,
eq: bool = True,
order: bool = False,
unsafe_hash: bool = False,
frozen: bool | None = None,
config: ConfigDict | type[object] | None = None,
validate_on_init: bool | None = None,
) -> type[PydanticDataclass]: ...
@dataclass_transform(field_specifiers=(dataclasses.field, Field, PrivateAttr))
def dataclass(
_cls: type[_T] | None = None,
*,
init: Literal[False] = False,
repr: bool = True,
eq: bool = True,
order: bool = False,
unsafe_hash: bool = False,
frozen: bool | None = None,
config: ConfigDict | type[object] | None = None,
validate_on_init: bool | None = None,
kw_only: bool = False,
slots: bool = False,
) -> Callable[[type[_T]], type[PydanticDataclass]] | type[PydanticDataclass]:
"""!!! abstract "Usage Documentation"
[`dataclasses`](../concepts/dataclasses.md)
A decorator used to create a Pydantic-enhanced dataclass, similar to the standard Python `dataclass`,
but with added validation.
This function should be used similarly to `dataclasses.dataclass`.
Args:
_cls: The target `dataclass`.
init: Included for signature compatibility with `dataclasses.dataclass`, and is passed through to
`dataclasses.dataclass` when appropriate. If specified, must be set to `False`, as pydantic inserts its
own `__init__` function.
repr: A boolean indicating whether to include the field in the `__repr__` output.
eq: Determines if a `__eq__` method should be generated for the class.
order: Determines if comparison magic methods should be generated, such as `__lt__`, but not `__eq__`.
unsafe_hash: Determines if a `__hash__` method should be included in the class, as in `dataclasses.dataclass`.
frozen: Determines if the generated class should be a 'frozen' `dataclass`, which does not allow its
attributes to be modified after it has been initialized. If not set, the value from the provided `config` argument will be used (and will default to `False` otherwise).
config: The Pydantic config to use for the `dataclass`.
validate_on_init: A deprecated parameter included for backwards compatibility; in V2, all Pydantic dataclasses
are validated on init.
kw_only: Determines if `__init__` method parameters must be specified by keyword only. Defaults to `False`.
slots: Determines if the generated class should be a 'slots' `dataclass`, which does not allow the addition of
new attributes after instantiation.
Returns:
A decorator that accepts a class as its argument and returns a Pydantic `dataclass`.
Raises:
AssertionError: Raised if `init` is not `False` or `validate_on_init` is `False`.
"""
assert init is False, 'pydantic.dataclasses.dataclass only supports init=False'
assert validate_on_init is not False, 'validate_on_init=False is no longer supported'
if sys.version_info >= (3, 10):
kwargs = {'kw_only': kw_only, 'slots': slots}
else:
kwargs = {}
def create_dataclass(cls: type[Any]) -> type[PydanticDataclass]:
"""Create a Pydantic dataclass from a regular dataclass.
Args:
cls: The class to create the Pydantic dataclass from.
Returns:
A Pydantic dataclass.
"""
from ._internal._utils import is_model_class
if is_model_class(cls):
raise PydanticUserError(
f'Cannot create a Pydantic dataclass from {cls.__name__} as it is already a Pydantic model',
code='dataclass-on-model',
)
original_cls = cls
# we warn on conflicting config specifications, but only if the class doesn't have a dataclass base
# because a dataclass base might provide a __pydantic_config__ attribute that we don't want to warn about
has_dataclass_base = any(dataclasses.is_dataclass(base) for base in cls.__bases__)
if not has_dataclass_base and config is not None and hasattr(cls, '__pydantic_config__'):
warn(
f'`config` is set via both the `dataclass` decorator and `__pydantic_config__` for dataclass {cls.__name__}. '
f'The `config` specification from `dataclass` decorator will take priority.',
category=UserWarning,
stacklevel=2,
)
# if config is not explicitly provided, try to read it from the type
config_dict = config if config is not None else getattr(cls, '__pydantic_config__', None)
config_wrapper = _config.ConfigWrapper(config_dict)
decorators = _decorators.DecoratorInfos.build(cls)
decorators.update_from_config(config_wrapper)
# Keep track of the original __doc__ so that we can restore it after applying the dataclasses decorator
# Otherwise, classes with no __doc__ will have their signature added into the JSON schema description,
# since dataclasses.dataclass will set this as the __doc__
original_doc = cls.__doc__
if _pydantic_dataclasses.is_stdlib_dataclass(cls):
# Vanilla dataclasses include a default docstring (representing the class signature),
# which we don't want to preserve.
original_doc = None
# We don't want to add validation to the existing std lib dataclass, so we will subclass it
# If the class is generic, we need to make sure the subclass also inherits from Generic
# with all the same parameters.
bases = (cls,)
if issubclass(cls, Generic):
generic_base = Generic[cls.__parameters__] # type: ignore
bases = bases + (generic_base,)
cls = types.new_class(cls.__name__, bases)
# Respect frozen setting from dataclass constructor and fallback to config setting if not provided
if frozen is not None:
frozen_ = frozen
if config_wrapper.frozen:
# It's not recommended to define both, as the setting from the dataclass decorator will take priority.
warn(
f'`frozen` is set via both the `dataclass` decorator and `config` for dataclass {cls.__name__!r}.'
'This is not recommended. The `frozen` specification on `dataclass` will take priority.',
category=UserWarning,
stacklevel=2,
)
else:
frozen_ = config_wrapper.frozen or False
# Make Pydantic's `Field()` function compatible with stdlib dataclasses. As we'll decorate
# `cls` with the stdlib `@dataclass` decorator first, there are two attributes, `kw_only` and
# `repr` that need to be understood *during* the stdlib creation. We do so in two steps:
# 1. On the decorated class, wrap `Field()` assignment with `dataclass.field()`, with the
# two attributes set (done in `as_dataclass_field()`)
cls_anns = _typing_extra.safe_get_annotations(cls)
for field_name in cls_anns:
# We should look for assignments in `__dict__` instead, but for now we follow
# the same behavior as stdlib dataclasses (see https://github.com/python/cpython/issues/88609)
field_value = getattr(cls, field_name, None)
if isinstance(field_value, FieldInfo):
setattr(cls, field_name, _pydantic_dataclasses.as_dataclass_field(field_value))
# 2. For bases of `cls` that are stdlib dataclasses, we temporarily patch their fields
# (see the docstring of the context manager):
with _pydantic_dataclasses.patch_base_fields(cls):
cls = dataclasses.dataclass( # pyright: ignore[reportCallIssue]
cls,
# the value of init here doesn't affect anything except that it makes it easier to generate a signature
init=True,
repr=repr,
eq=eq,
order=order,
unsafe_hash=unsafe_hash,
frozen=frozen_,
**kwargs,
)
if config_wrapper.validate_assignment:
original_setattr = cls.__setattr__
@functools.wraps(cls.__setattr__)
def validated_setattr(instance: PydanticDataclass, name: str, value: Any, /) -> None:
if frozen_:
return original_setattr(instance, name, value) # pyright: ignore[reportCallIssue]
inst_cls = type(instance)
attr = getattr(inst_cls, name, None)
if isinstance(attr, property):
attr.__set__(instance, value)
elif isinstance(attr, functools.cached_property):
instance.__dict__.__setitem__(name, value)
else:
inst_cls.__pydantic_validator__.validate_assignment(instance, name, value)
cls.__setattr__ = validated_setattr.__get__(None, cls) # type: ignore
if slots and not hasattr(cls, '__setstate__'):
# If slots is set, `pickle` (relied on by `copy.copy()`) will use
# `__setattr__()` to reconstruct the dataclass. However, the custom
# `__setattr__()` set above relies on `validate_assignment()`, which
# in turn expects all the field values to be already present on the
# instance, resulting in attribute errors.
# As such, we make use of `object.__setattr__()` instead.
# Note that we do so only if `__setstate__()` isn't already set (this is the
# case if on top of `slots`, `frozen` is used).
# Taken from `dataclasses._dataclass_get/setstate()`:
def _dataclass_getstate(self: Any) -> list[Any]:
return [getattr(self, f.name) for f in dataclasses.fields(self)]
def _dataclass_setstate(self: Any, state: list[Any]) -> None:
for field, value in zip(dataclasses.fields(self), state):
object.__setattr__(self, field.name, value)
cls.__getstate__ = _dataclass_getstate # pyright: ignore[reportAttributeAccessIssue]
cls.__setstate__ = _dataclass_setstate # pyright: ignore[reportAttributeAccessIssue]
# This is an undocumented attribute to distinguish stdlib/Pydantic dataclasses.
# It should be set as early as possible:
cls.__is_pydantic_dataclass__ = True
cls.__pydantic_decorators__ = decorators # type: ignore
cls.__doc__ = original_doc
# Can be non-existent for dynamically created classes:
firstlineno = getattr(original_cls, '__firstlineno__', None)
cls.__module__ = original_cls.__module__
if sys.version_info >= (3, 13) and firstlineno is not None:
# As per https://docs.python.org/3/reference/datamodel.html#type.__firstlineno__:
# Setting the `__module__` attribute removes the `__firstlineno__` item from the types dictionary.
original_cls.__firstlineno__ = firstlineno
cls.__firstlineno__ = firstlineno
cls.__qualname__ = original_cls.__qualname__
cls.__pydantic_fields_complete__ = classmethod(_pydantic_fields_complete)
cls.__pydantic_complete__ = False # `complete_dataclass` will set it to `True` if successful.
# TODO `parent_namespace` is currently None, but we could do the same thing as Pydantic models:
# fetch the parent ns using `parent_frame_namespace` (if the dataclass was defined in a function),
# and possibly cache it (see the `__pydantic_parent_namespace__` logic for models).
_pydantic_dataclasses.complete_dataclass(cls, config_wrapper, raise_errors=False)
return cls
return create_dataclass if _cls is None else create_dataclass(_cls)
def _pydantic_fields_complete(cls: type[PydanticDataclass]) -> bool:
"""Return whether the fields where successfully collected (i.e. type hints were successfully resolves).
This is a private property, not meant to be used outside Pydantic.
"""
return all(field_info._complete for field_info in cls.__pydantic_fields__.values())
__getattr__ = getattr_migration(__name__)
if sys.version_info < (3, 11):
# Monkeypatch dataclasses.InitVar so that typing doesn't error if it occurs as a type when evaluating type hints
# Starting in 3.11, typing.get_type_hints will not raise an error if the retrieved type hints are not callable.
def _call_initvar(*args: Any, **kwargs: Any) -> NoReturn:
"""This function does nothing but raise an error that is as similar as possible to what you'd get
if you were to try calling `InitVar[int]()` without this monkeypatch. The whole purpose is just
to ensure typing._type_check does not error if the type hint evaluates to `InitVar[<parameter>]`.
"""
raise TypeError("'InitVar' object is not callable")
dataclasses.InitVar.__call__ = _call_initvar
def rebuild_dataclass(
cls: type[PydanticDataclass],
*,
force: bool = False,
raise_errors: bool = True,
_parent_namespace_depth: int = 2,
_types_namespace: MappingNamespace | None = None,
) -> bool | None:
"""Try to rebuild the pydantic-core schema for the dataclass.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during
the initial attempt to build the schema, and automatic rebuilding fails.
This is analogous to `BaseModel.model_rebuild`.
Args:
cls: The class to rebuild the pydantic-core schema for.
force: Whether to force the rebuilding of the schema, defaults to `False`.
raise_errors: Whether to raise errors, defaults to `True`.
_parent_namespace_depth: The depth level of the parent namespace, defaults to 2.
_types_namespace: The types namespace, defaults to `None`.
Returns:
Returns `None` if the schema is already "complete" and rebuilding was not required.
If rebuilding _was_ required, returns `True` if rebuilding was successful, otherwise `False`.
"""
if not force and cls.__pydantic_complete__:
return None
for attr in ('__pydantic_core_schema__', '__pydantic_validator__', '__pydantic_serializer__'):
if attr in cls.__dict__ and not isinstance(getattr(cls, attr), _mock_val_ser.MockValSer):
# Deleting the validator/serializer is necessary as otherwise they can get reused in
# pydantic-core. Same applies for the core schema that can be reused in schema generation.
delattr(cls, attr)
cls.__pydantic_complete__ = False
if _types_namespace is not None:
rebuild_ns = _types_namespace
elif _parent_namespace_depth > 0:
rebuild_ns = _typing_extra.parent_frame_namespace(parent_depth=_parent_namespace_depth, force=True) or {}
else:
rebuild_ns = {}
ns_resolver = _namespace_utils.NsResolver(
parent_namespace=rebuild_ns,
)
return _pydantic_dataclasses.complete_dataclass(
cls,
_config.ConfigWrapper(cls.__pydantic_config__, check=False),
raise_errors=raise_errors,
ns_resolver=ns_resolver,
# We could provide a different config instead (with `'defer_build'` set to `True`)
# of this explicit `_force_build` argument, but because config can come from the
# decorator parameter or the `__pydantic_config__` attribute, `complete_dataclass`
# will overwrite `__pydantic_config__` with the provided config above:
_force_build=True,
)
def is_pydantic_dataclass(class_: type[Any], /) -> TypeGuard[type[PydanticDataclass]]:
"""Whether a class is a pydantic dataclass.
Args:
class_: The class.
Returns:
`True` if the class is a pydantic dataclass, `False` otherwise.
"""
try:
return '__is_pydantic_dataclass__' in class_.__dict__ and dataclasses.is_dataclass(class_)
except AttributeError:
return False