Files
Hotel-Booking/Backend/venv/lib/python3.12/site-packages/fastapi/_compat/v2.py
Iliyan Angelov 62c1fe5951 updates
2025-12-01 06:50:10 +02:00

480 lines
16 KiB
Python

import re
import warnings
from copy import copy, deepcopy
from dataclasses import dataclass
from enum import Enum
from typing import (
Any,
Dict,
List,
Sequence,
Set,
Tuple,
Type,
Union,
cast,
)
from fastapi._compat import may_v1, shared
from fastapi.openapi.constants import REF_TEMPLATE
from fastapi.types import IncEx, ModelNameMap
from pydantic import BaseModel, TypeAdapter, create_model
from pydantic import PydanticSchemaGenerationError as PydanticSchemaGenerationError
from pydantic import PydanticUndefinedAnnotation as PydanticUndefinedAnnotation
from pydantic import ValidationError as ValidationError
from pydantic._internal._schema_generation_shared import ( # type: ignore[attr-defined]
GetJsonSchemaHandler as GetJsonSchemaHandler,
)
from pydantic._internal._typing_extra import eval_type_lenient
from pydantic._internal._utils import lenient_issubclass as lenient_issubclass
from pydantic.fields import FieldInfo as FieldInfo
from pydantic.json_schema import GenerateJsonSchema as GenerateJsonSchema
from pydantic.json_schema import JsonSchemaValue as JsonSchemaValue
from pydantic_core import CoreSchema as CoreSchema
from pydantic_core import PydanticUndefined, PydanticUndefinedType
from pydantic_core import Url as Url
from typing_extensions import Annotated, Literal, get_args, get_origin
try:
from pydantic_core.core_schema import (
with_info_plain_validator_function as with_info_plain_validator_function,
)
except ImportError: # pragma: no cover
from pydantic_core.core_schema import (
general_plain_validator_function as with_info_plain_validator_function, # noqa: F401
)
RequiredParam = PydanticUndefined
Undefined = PydanticUndefined
UndefinedType = PydanticUndefinedType
evaluate_forwardref = eval_type_lenient
Validator = Any
class BaseConfig:
pass
class ErrorWrapper(Exception):
pass
@dataclass
class ModelField:
field_info: FieldInfo
name: str
mode: Literal["validation", "serialization"] = "validation"
@property
def alias(self) -> str:
a = self.field_info.alias
return a if a is not None else self.name
@property
def required(self) -> bool:
return self.field_info.is_required()
@property
def default(self) -> Any:
return self.get_default()
@property
def type_(self) -> Any:
return self.field_info.annotation
def __post_init__(self) -> None:
with warnings.catch_warnings():
# Pydantic >= 2.12.0 warns about field specific metadata that is unused
# (e.g. `TypeAdapter(Annotated[int, Field(alias='b')])`). In some cases, we
# end up building the type adapter from a model field annotation so we
# need to ignore the warning:
if shared.PYDANTIC_VERSION_MINOR_TUPLE >= (2, 12):
from pydantic.warnings import UnsupportedFieldAttributeWarning
warnings.simplefilter(
"ignore", category=UnsupportedFieldAttributeWarning
)
self._type_adapter: TypeAdapter[Any] = TypeAdapter(
Annotated[self.field_info.annotation, self.field_info]
)
def get_default(self) -> Any:
if self.field_info.is_required():
return Undefined
return self.field_info.get_default(call_default_factory=True)
def validate(
self,
value: Any,
values: Dict[str, Any] = {}, # noqa: B006
*,
loc: Tuple[Union[int, str], ...] = (),
) -> Tuple[Any, Union[List[Dict[str, Any]], None]]:
try:
return (
self._type_adapter.validate_python(value, from_attributes=True),
None,
)
except ValidationError as exc:
return None, may_v1._regenerate_error_with_loc(
errors=exc.errors(include_url=False), loc_prefix=loc
)
def serialize(
self,
value: Any,
*,
mode: Literal["json", "python"] = "json",
include: Union[IncEx, None] = None,
exclude: Union[IncEx, None] = None,
by_alias: bool = True,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
) -> Any:
# What calls this code passes a value that already called
# self._type_adapter.validate_python(value)
return self._type_adapter.dump_python(
value,
mode=mode,
include=include,
exclude=exclude,
by_alias=by_alias,
exclude_unset=exclude_unset,
exclude_defaults=exclude_defaults,
exclude_none=exclude_none,
)
def __hash__(self) -> int:
# Each ModelField is unique for our purposes, to allow making a dict from
# ModelField to its JSON Schema.
return id(self)
def get_annotation_from_field_info(
annotation: Any, field_info: FieldInfo, field_name: str
) -> Any:
return annotation
def _model_rebuild(model: Type[BaseModel]) -> None:
model.model_rebuild()
def _model_dump(
model: BaseModel, mode: Literal["json", "python"] = "json", **kwargs: Any
) -> Any:
return model.model_dump(mode=mode, **kwargs)
def _get_model_config(model: BaseModel) -> Any:
return model.model_config
def get_schema_from_model_field(
*,
field: ModelField,
model_name_map: ModelNameMap,
field_mapping: Dict[
Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue
],
separate_input_output_schemas: bool = True,
) -> Dict[str, Any]:
override_mode: Union[Literal["validation"], None] = (
None if separate_input_output_schemas else "validation"
)
# This expects that GenerateJsonSchema was already used to generate the definitions
json_schema = field_mapping[(field, override_mode or field.mode)]
if "$ref" not in json_schema:
# TODO remove when deprecating Pydantic v1
# Ref: https://github.com/pydantic/pydantic/blob/d61792cc42c80b13b23e3ffa74bc37ec7c77f7d1/pydantic/schema.py#L207
json_schema["title"] = field.field_info.title or field.alias.title().replace(
"_", " "
)
return json_schema
def get_definitions(
*,
fields: Sequence[ModelField],
model_name_map: ModelNameMap,
separate_input_output_schemas: bool = True,
) -> Tuple[
Dict[Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue],
Dict[str, Dict[str, Any]],
]:
schema_generator = GenerateJsonSchema(ref_template=REF_TEMPLATE)
override_mode: Union[Literal["validation"], None] = (
None if separate_input_output_schemas else "validation"
)
validation_fields = [field for field in fields if field.mode == "validation"]
serialization_fields = [field for field in fields if field.mode == "serialization"]
flat_validation_models = get_flat_models_from_fields(
validation_fields, known_models=set()
)
flat_serialization_models = get_flat_models_from_fields(
serialization_fields, known_models=set()
)
flat_validation_model_fields = [
ModelField(
field_info=FieldInfo(annotation=model),
name=model.__name__,
mode="validation",
)
for model in flat_validation_models
]
flat_serialization_model_fields = [
ModelField(
field_info=FieldInfo(annotation=model),
name=model.__name__,
mode="serialization",
)
for model in flat_serialization_models
]
flat_model_fields = flat_validation_model_fields + flat_serialization_model_fields
input_types = {f.type_ for f in fields}
unique_flat_model_fields = {
f for f in flat_model_fields if f.type_ not in input_types
}
inputs = [
(field, override_mode or field.mode, field._type_adapter.core_schema)
for field in list(fields) + list(unique_flat_model_fields)
]
field_mapping, definitions = schema_generator.generate_definitions(inputs=inputs)
for item_def in cast(Dict[str, Dict[str, Any]], definitions).values():
if "description" in item_def:
item_description = cast(str, item_def["description"]).split("\f")[0]
item_def["description"] = item_description
new_mapping, new_definitions = _remap_definitions_and_field_mappings(
model_name_map=model_name_map,
definitions=definitions, # type: ignore[arg-type]
field_mapping=field_mapping,
)
return new_mapping, new_definitions
def _replace_refs(
*,
schema: Dict[str, Any],
old_name_to_new_name_map: Dict[str, str],
) -> Dict[str, Any]:
new_schema = deepcopy(schema)
for key, value in new_schema.items():
if key == "$ref":
value = schema["$ref"]
if isinstance(value, str):
ref_name = schema["$ref"].split("/")[-1]
if ref_name in old_name_to_new_name_map:
new_name = old_name_to_new_name_map[ref_name]
new_schema["$ref"] = REF_TEMPLATE.format(model=new_name)
continue
if isinstance(value, dict):
new_schema[key] = _replace_refs(
schema=value,
old_name_to_new_name_map=old_name_to_new_name_map,
)
elif isinstance(value, list):
new_value = []
for item in value:
if isinstance(item, dict):
new_item = _replace_refs(
schema=item,
old_name_to_new_name_map=old_name_to_new_name_map,
)
new_value.append(new_item)
else:
new_value.append(item)
new_schema[key] = new_value
return new_schema
def _remap_definitions_and_field_mappings(
*,
model_name_map: ModelNameMap,
definitions: Dict[str, Any],
field_mapping: Dict[
Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue
],
) -> Tuple[
Dict[Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue],
Dict[str, Any],
]:
old_name_to_new_name_map = {}
for field_key, schema in field_mapping.items():
model = field_key[0].type_
if model not in model_name_map:
continue
new_name = model_name_map[model]
old_name = schema["$ref"].split("/")[-1]
if old_name in {f"{new_name}-Input", f"{new_name}-Output"}:
continue
old_name_to_new_name_map[old_name] = new_name
new_field_mapping: Dict[
Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue
] = {}
for field_key, schema in field_mapping.items():
new_schema = _replace_refs(
schema=schema,
old_name_to_new_name_map=old_name_to_new_name_map,
)
new_field_mapping[field_key] = new_schema
new_definitions = {}
for key, value in definitions.items():
if key in old_name_to_new_name_map:
new_key = old_name_to_new_name_map[key]
else:
new_key = key
new_value = _replace_refs(
schema=value,
old_name_to_new_name_map=old_name_to_new_name_map,
)
new_definitions[new_key] = new_value
return new_field_mapping, new_definitions
def is_scalar_field(field: ModelField) -> bool:
from fastapi import params
return shared.field_annotation_is_scalar(
field.field_info.annotation
) and not isinstance(field.field_info, params.Body)
def is_sequence_field(field: ModelField) -> bool:
return shared.field_annotation_is_sequence(field.field_info.annotation)
def is_scalar_sequence_field(field: ModelField) -> bool:
return shared.field_annotation_is_scalar_sequence(field.field_info.annotation)
def is_bytes_field(field: ModelField) -> bool:
return shared.is_bytes_or_nonable_bytes_annotation(field.type_)
def is_bytes_sequence_field(field: ModelField) -> bool:
return shared.is_bytes_sequence_annotation(field.type_)
def copy_field_info(*, field_info: FieldInfo, annotation: Any) -> FieldInfo:
cls = type(field_info)
merged_field_info = cls.from_annotation(annotation)
new_field_info = copy(field_info)
new_field_info.metadata = merged_field_info.metadata
new_field_info.annotation = merged_field_info.annotation
return new_field_info
def serialize_sequence_value(*, field: ModelField, value: Any) -> Sequence[Any]:
origin_type = get_origin(field.field_info.annotation) or field.field_info.annotation
assert issubclass(origin_type, shared.sequence_types) # type: ignore[arg-type]
return shared.sequence_annotation_to_type[origin_type](value) # type: ignore[no-any-return]
def get_missing_field_error(loc: Tuple[str, ...]) -> Dict[str, Any]:
error = ValidationError.from_exception_data(
"Field required", [{"type": "missing", "loc": loc, "input": {}}]
).errors(include_url=False)[0]
error["input"] = None
return error # type: ignore[return-value]
def create_body_model(
*, fields: Sequence[ModelField], model_name: str
) -> Type[BaseModel]:
field_params = {f.name: (f.field_info.annotation, f.field_info) for f in fields}
BodyModel: Type[BaseModel] = create_model(model_name, **field_params) # type: ignore[call-overload]
return BodyModel
def get_model_fields(model: Type[BaseModel]) -> List[ModelField]:
return [
ModelField(field_info=field_info, name=name)
for name, field_info in model.model_fields.items()
]
# Duplicate of several schema functions from Pydantic v1 to make them compatible with
# Pydantic v2 and allow mixing the models
TypeModelOrEnum = Union[Type["BaseModel"], Type[Enum]]
TypeModelSet = Set[TypeModelOrEnum]
def normalize_name(name: str) -> str:
return re.sub(r"[^a-zA-Z0-9.\-_]", "_", name)
def get_model_name_map(unique_models: TypeModelSet) -> Dict[TypeModelOrEnum, str]:
name_model_map = {}
conflicting_names: Set[str] = set()
for model in unique_models:
model_name = normalize_name(model.__name__)
if model_name in conflicting_names:
model_name = get_long_model_name(model)
name_model_map[model_name] = model
elif model_name in name_model_map:
conflicting_names.add(model_name)
conflicting_model = name_model_map.pop(model_name)
name_model_map[get_long_model_name(conflicting_model)] = conflicting_model
name_model_map[get_long_model_name(model)] = model
else:
name_model_map[model_name] = model
return {v: k for k, v in name_model_map.items()}
def get_flat_models_from_model(
model: Type["BaseModel"], known_models: Union[TypeModelSet, None] = None
) -> TypeModelSet:
known_models = known_models or set()
fields = get_model_fields(model)
get_flat_models_from_fields(fields, known_models=known_models)
return known_models
def get_flat_models_from_annotation(
annotation: Any, known_models: TypeModelSet
) -> TypeModelSet:
origin = get_origin(annotation)
if origin is not None:
for arg in get_args(annotation):
if lenient_issubclass(arg, (BaseModel, Enum)) and arg not in known_models:
known_models.add(arg)
if lenient_issubclass(arg, BaseModel):
get_flat_models_from_model(arg, known_models=known_models)
else:
get_flat_models_from_annotation(arg, known_models=known_models)
return known_models
def get_flat_models_from_field(
field: ModelField, known_models: TypeModelSet
) -> TypeModelSet:
field_type = field.type_
if lenient_issubclass(field_type, BaseModel):
if field_type in known_models:
return known_models
known_models.add(field_type)
get_flat_models_from_model(field_type, known_models=known_models)
elif lenient_issubclass(field_type, Enum):
known_models.add(field_type)
else:
get_flat_models_from_annotation(field_type, known_models=known_models)
return known_models
def get_flat_models_from_fields(
fields: Sequence[ModelField], known_models: TypeModelSet
) -> TypeModelSet:
for field in fields:
get_flat_models_from_field(field, known_models=known_models)
return known_models
def get_long_model_name(model: TypeModelOrEnum) -> str:
return f"{model.__module__}__{model.__qualname__}".replace(".", "__")