updates
This commit is contained in:
@@ -4,18 +4,19 @@ from __future__ import annotations as _annotations
|
||||
|
||||
import dataclasses
|
||||
import sys
|
||||
import warnings
|
||||
from functools import partialmethod
|
||||
from types import FunctionType
|
||||
from typing import TYPE_CHECKING, Any, Callable, TypeVar, Union, cast, overload
|
||||
from typing import TYPE_CHECKING, Annotated, Any, Callable, Literal, TypeVar, Union, cast, overload
|
||||
|
||||
from pydantic_core import core_schema
|
||||
from pydantic_core import core_schema as _core_schema
|
||||
from typing_extensions import Annotated, Literal, TypeAlias
|
||||
from pydantic_core import PydanticUndefined, core_schema
|
||||
from typing_extensions import Self, TypeAlias
|
||||
|
||||
from . import GetCoreSchemaHandler as _GetCoreSchemaHandler
|
||||
from ._internal import _core_metadata, _decorators, _generics, _internal_dataclass
|
||||
from ._internal import _decorators, _generics, _internal_dataclass
|
||||
from .annotated_handlers import GetCoreSchemaHandler
|
||||
from .errors import PydanticUserError
|
||||
from .version import version_short
|
||||
from .warnings import ArbitraryTypeWarning, PydanticDeprecatedSince212
|
||||
|
||||
if sys.version_info < (3, 11):
|
||||
from typing_extensions import Protocol
|
||||
@@ -27,7 +28,8 @@ _inspect_validator = _decorators.inspect_validator
|
||||
|
||||
@dataclasses.dataclass(frozen=True, **_internal_dataclass.slots_true)
|
||||
class AfterValidator:
|
||||
"""Usage docs: https://docs.pydantic.dev/2.5/concepts/validators/#annotated-validators
|
||||
"""!!! abstract "Usage Documentation"
|
||||
[field *after* validators](../concepts/validators.md#field-after-validator)
|
||||
|
||||
A metadata class that indicates that a validation should be applied **after** the inner validation logic.
|
||||
|
||||
@@ -35,8 +37,8 @@ class AfterValidator:
|
||||
func: The validator function.
|
||||
|
||||
Example:
|
||||
```py
|
||||
from typing_extensions import Annotated
|
||||
```python
|
||||
from typing import Annotated
|
||||
|
||||
from pydantic import AfterValidator, BaseModel, ValidationError
|
||||
|
||||
@@ -70,29 +72,36 @@ class AfterValidator:
|
||||
|
||||
func: core_schema.NoInfoValidatorFunction | core_schema.WithInfoValidatorFunction
|
||||
|
||||
def __get_pydantic_core_schema__(self, source_type: Any, handler: _GetCoreSchemaHandler) -> core_schema.CoreSchema:
|
||||
def __get_pydantic_core_schema__(self, source_type: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema:
|
||||
schema = handler(source_type)
|
||||
info_arg = _inspect_validator(self.func, 'after')
|
||||
info_arg = _inspect_validator(self.func, mode='after', type='field')
|
||||
if info_arg:
|
||||
func = cast(core_schema.WithInfoValidatorFunction, self.func)
|
||||
return core_schema.with_info_after_validator_function(func, schema=schema, field_name=handler.field_name)
|
||||
return core_schema.with_info_after_validator_function(func, schema=schema)
|
||||
else:
|
||||
func = cast(core_schema.NoInfoValidatorFunction, self.func)
|
||||
return core_schema.no_info_after_validator_function(func, schema=schema)
|
||||
|
||||
@classmethod
|
||||
def _from_decorator(cls, decorator: _decorators.Decorator[_decorators.FieldValidatorDecoratorInfo]) -> Self:
|
||||
return cls(func=decorator.func)
|
||||
|
||||
|
||||
@dataclasses.dataclass(frozen=True, **_internal_dataclass.slots_true)
|
||||
class BeforeValidator:
|
||||
"""Usage docs: https://docs.pydantic.dev/2.5/concepts/validators/#annotated-validators
|
||||
"""!!! abstract "Usage Documentation"
|
||||
[field *before* validators](../concepts/validators.md#field-before-validator)
|
||||
|
||||
A metadata class that indicates that a validation should be applied **before** the inner validation logic.
|
||||
|
||||
Attributes:
|
||||
func: The validator function.
|
||||
json_schema_input_type: The input type used to generate the appropriate
|
||||
JSON Schema (in validation mode). The actual input type is `Any`.
|
||||
|
||||
Example:
|
||||
```py
|
||||
from typing_extensions import Annotated
|
||||
```python
|
||||
from typing import Annotated
|
||||
|
||||
from pydantic import BaseModel, BeforeValidator
|
||||
|
||||
@@ -113,68 +122,153 @@ class BeforeValidator:
|
||||
"""
|
||||
|
||||
func: core_schema.NoInfoValidatorFunction | core_schema.WithInfoValidatorFunction
|
||||
json_schema_input_type: Any = PydanticUndefined
|
||||
|
||||
def __get_pydantic_core_schema__(self, source_type: Any, handler: _GetCoreSchemaHandler) -> core_schema.CoreSchema:
|
||||
def __get_pydantic_core_schema__(self, source_type: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema:
|
||||
schema = handler(source_type)
|
||||
info_arg = _inspect_validator(self.func, 'before')
|
||||
input_schema = (
|
||||
None
|
||||
if self.json_schema_input_type is PydanticUndefined
|
||||
else handler.generate_schema(self.json_schema_input_type)
|
||||
)
|
||||
|
||||
info_arg = _inspect_validator(self.func, mode='before', type='field')
|
||||
if info_arg:
|
||||
func = cast(core_schema.WithInfoValidatorFunction, self.func)
|
||||
return core_schema.with_info_before_validator_function(func, schema=schema, field_name=handler.field_name)
|
||||
return core_schema.with_info_before_validator_function(
|
||||
func,
|
||||
schema=schema,
|
||||
json_schema_input_schema=input_schema,
|
||||
)
|
||||
else:
|
||||
func = cast(core_schema.NoInfoValidatorFunction, self.func)
|
||||
return core_schema.no_info_before_validator_function(func, schema=schema)
|
||||
return core_schema.no_info_before_validator_function(
|
||||
func, schema=schema, json_schema_input_schema=input_schema
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _from_decorator(cls, decorator: _decorators.Decorator[_decorators.FieldValidatorDecoratorInfo]) -> Self:
|
||||
return cls(
|
||||
func=decorator.func,
|
||||
json_schema_input_type=decorator.info.json_schema_input_type,
|
||||
)
|
||||
|
||||
|
||||
@dataclasses.dataclass(frozen=True, **_internal_dataclass.slots_true)
|
||||
class PlainValidator:
|
||||
"""Usage docs: https://docs.pydantic.dev/2.5/concepts/validators/#annotated-validators
|
||||
"""!!! abstract "Usage Documentation"
|
||||
[field *plain* validators](../concepts/validators.md#field-plain-validator)
|
||||
|
||||
A metadata class that indicates that a validation should be applied **instead** of the inner validation logic.
|
||||
|
||||
!!! note
|
||||
Before v2.9, `PlainValidator` wasn't always compatible with JSON Schema generation for `mode='validation'`.
|
||||
You can now use the `json_schema_input_type` argument to specify the input type of the function
|
||||
to be used in the JSON schema when `mode='validation'` (the default). See the example below for more details.
|
||||
|
||||
Attributes:
|
||||
func: The validator function.
|
||||
json_schema_input_type: The input type used to generate the appropriate
|
||||
JSON Schema (in validation mode). The actual input type is `Any`.
|
||||
|
||||
Example:
|
||||
```py
|
||||
from typing_extensions import Annotated
|
||||
```python
|
||||
from typing import Annotated, Union
|
||||
|
||||
from pydantic import BaseModel, PlainValidator
|
||||
|
||||
MyInt = Annotated[int, PlainValidator(lambda v: int(v) + 1)]
|
||||
def validate(v: object) -> int:
|
||||
if not isinstance(v, (int, str)):
|
||||
raise ValueError(f'Expected int or str, go {type(v)}')
|
||||
|
||||
return int(v) + 1
|
||||
|
||||
MyInt = Annotated[
|
||||
int,
|
||||
PlainValidator(validate, json_schema_input_type=Union[str, int]), # (1)!
|
||||
]
|
||||
|
||||
class Model(BaseModel):
|
||||
a: MyInt
|
||||
|
||||
print(Model(a='1').a)
|
||||
#> 2
|
||||
|
||||
print(Model(a=1).a)
|
||||
#> 2
|
||||
```
|
||||
|
||||
1. In this example, we've specified the `json_schema_input_type` as `Union[str, int]` which indicates to the JSON schema
|
||||
generator that in validation mode, the input type for the `a` field can be either a [`str`][] or an [`int`][].
|
||||
"""
|
||||
|
||||
func: core_schema.NoInfoValidatorFunction | core_schema.WithInfoValidatorFunction
|
||||
json_schema_input_type: Any = Any
|
||||
|
||||
def __get_pydantic_core_schema__(self, source_type: Any, handler: _GetCoreSchemaHandler) -> core_schema.CoreSchema:
|
||||
info_arg = _inspect_validator(self.func, 'plain')
|
||||
def __get_pydantic_core_schema__(self, source_type: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema:
|
||||
# Note that for some valid uses of PlainValidator, it is not possible to generate a core schema for the
|
||||
# source_type, so calling `handler(source_type)` will error, which prevents us from generating a proper
|
||||
# serialization schema. To work around this for use cases that will not involve serialization, we simply
|
||||
# catch any PydanticSchemaGenerationError that may be raised while attempting to build the serialization schema
|
||||
# and abort any attempts to handle special serialization.
|
||||
from pydantic import PydanticSchemaGenerationError
|
||||
|
||||
try:
|
||||
schema = handler(source_type)
|
||||
# TODO if `schema['serialization']` is one of `'include-exclude-dict/sequence',
|
||||
# schema validation will fail. That's why we use 'type ignore' comments below.
|
||||
serialization = schema.get(
|
||||
'serialization',
|
||||
core_schema.wrap_serializer_function_ser_schema(
|
||||
function=lambda v, h: h(v),
|
||||
schema=schema,
|
||||
return_schema=handler.generate_schema(source_type),
|
||||
),
|
||||
)
|
||||
except PydanticSchemaGenerationError:
|
||||
serialization = None
|
||||
|
||||
input_schema = handler.generate_schema(self.json_schema_input_type)
|
||||
|
||||
info_arg = _inspect_validator(self.func, mode='plain', type='field')
|
||||
if info_arg:
|
||||
func = cast(core_schema.WithInfoValidatorFunction, self.func)
|
||||
return core_schema.with_info_plain_validator_function(func, field_name=handler.field_name)
|
||||
return core_schema.with_info_plain_validator_function(
|
||||
func,
|
||||
serialization=serialization, # pyright: ignore[reportArgumentType]
|
||||
json_schema_input_schema=input_schema,
|
||||
)
|
||||
else:
|
||||
func = cast(core_schema.NoInfoValidatorFunction, self.func)
|
||||
return core_schema.no_info_plain_validator_function(func)
|
||||
return core_schema.no_info_plain_validator_function(
|
||||
func,
|
||||
serialization=serialization, # pyright: ignore[reportArgumentType]
|
||||
json_schema_input_schema=input_schema,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _from_decorator(cls, decorator: _decorators.Decorator[_decorators.FieldValidatorDecoratorInfo]) -> Self:
|
||||
return cls(
|
||||
func=decorator.func,
|
||||
json_schema_input_type=decorator.info.json_schema_input_type,
|
||||
)
|
||||
|
||||
|
||||
@dataclasses.dataclass(frozen=True, **_internal_dataclass.slots_true)
|
||||
class WrapValidator:
|
||||
"""Usage docs: https://docs.pydantic.dev/2.5/concepts/validators/#annotated-validators
|
||||
"""!!! abstract "Usage Documentation"
|
||||
[field *wrap* validators](../concepts/validators.md#field-wrap-validator)
|
||||
|
||||
A metadata class that indicates that a validation should be applied **around** the inner validation logic.
|
||||
|
||||
Attributes:
|
||||
func: The validator function.
|
||||
json_schema_input_type: The input type used to generate the appropriate
|
||||
JSON Schema (in validation mode). The actual input type is `Any`.
|
||||
|
||||
```py
|
||||
```python
|
||||
from datetime import datetime
|
||||
|
||||
from typing_extensions import Annotated
|
||||
from typing import Annotated
|
||||
|
||||
from pydantic import BaseModel, ValidationError, WrapValidator
|
||||
|
||||
@@ -201,95 +295,133 @@ class WrapValidator:
|
||||
"""
|
||||
|
||||
func: core_schema.NoInfoWrapValidatorFunction | core_schema.WithInfoWrapValidatorFunction
|
||||
json_schema_input_type: Any = PydanticUndefined
|
||||
|
||||
def __get_pydantic_core_schema__(self, source_type: Any, handler: _GetCoreSchemaHandler) -> core_schema.CoreSchema:
|
||||
def __get_pydantic_core_schema__(self, source_type: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema:
|
||||
schema = handler(source_type)
|
||||
info_arg = _inspect_validator(self.func, 'wrap')
|
||||
input_schema = (
|
||||
None
|
||||
if self.json_schema_input_type is PydanticUndefined
|
||||
else handler.generate_schema(self.json_schema_input_type)
|
||||
)
|
||||
|
||||
info_arg = _inspect_validator(self.func, mode='wrap', type='field')
|
||||
if info_arg:
|
||||
func = cast(core_schema.WithInfoWrapValidatorFunction, self.func)
|
||||
return core_schema.with_info_wrap_validator_function(func, schema=schema, field_name=handler.field_name)
|
||||
return core_schema.with_info_wrap_validator_function(
|
||||
func,
|
||||
schema=schema,
|
||||
json_schema_input_schema=input_schema,
|
||||
)
|
||||
else:
|
||||
func = cast(core_schema.NoInfoWrapValidatorFunction, self.func)
|
||||
return core_schema.no_info_wrap_validator_function(func, schema=schema)
|
||||
return core_schema.no_info_wrap_validator_function(
|
||||
func,
|
||||
schema=schema,
|
||||
json_schema_input_schema=input_schema,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _from_decorator(cls, decorator: _decorators.Decorator[_decorators.FieldValidatorDecoratorInfo]) -> Self:
|
||||
return cls(
|
||||
func=decorator.func,
|
||||
json_schema_input_type=decorator.info.json_schema_input_type,
|
||||
)
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
|
||||
class _OnlyValueValidatorClsMethod(Protocol):
|
||||
def __call__(self, __cls: Any, __value: Any) -> Any:
|
||||
...
|
||||
def __call__(self, cls: Any, value: Any, /) -> Any: ...
|
||||
|
||||
class _V2ValidatorClsMethod(Protocol):
|
||||
def __call__(self, __cls: Any, __input_value: Any, __info: _core_schema.ValidationInfo) -> Any:
|
||||
...
|
||||
def __call__(self, cls: Any, value: Any, info: core_schema.ValidationInfo[Any], /) -> Any: ...
|
||||
|
||||
class _OnlyValueWrapValidatorClsMethod(Protocol):
|
||||
def __call__(self, cls: Any, value: Any, handler: core_schema.ValidatorFunctionWrapHandler, /) -> Any: ...
|
||||
|
||||
class _V2WrapValidatorClsMethod(Protocol):
|
||||
def __call__(
|
||||
self,
|
||||
__cls: Any,
|
||||
__input_value: Any,
|
||||
__validator: _core_schema.ValidatorFunctionWrapHandler,
|
||||
__info: _core_schema.ValidationInfo,
|
||||
) -> Any:
|
||||
...
|
||||
cls: Any,
|
||||
value: Any,
|
||||
handler: core_schema.ValidatorFunctionWrapHandler,
|
||||
info: core_schema.ValidationInfo[Any],
|
||||
/,
|
||||
) -> Any: ...
|
||||
|
||||
_V2Validator = Union[
|
||||
_V2ValidatorClsMethod,
|
||||
_core_schema.WithInfoValidatorFunction,
|
||||
core_schema.WithInfoValidatorFunction,
|
||||
_OnlyValueValidatorClsMethod,
|
||||
_core_schema.NoInfoValidatorFunction,
|
||||
core_schema.NoInfoValidatorFunction,
|
||||
]
|
||||
|
||||
_V2WrapValidator = Union[
|
||||
_V2WrapValidatorClsMethod,
|
||||
_core_schema.WithInfoWrapValidatorFunction,
|
||||
core_schema.WithInfoWrapValidatorFunction,
|
||||
_OnlyValueWrapValidatorClsMethod,
|
||||
core_schema.NoInfoWrapValidatorFunction,
|
||||
]
|
||||
|
||||
_PartialClsOrStaticMethod: TypeAlias = Union[classmethod[Any, Any, Any], staticmethod[Any, Any], partialmethod[Any]]
|
||||
|
||||
_V2BeforeAfterOrPlainValidatorType = TypeVar(
|
||||
'_V2BeforeAfterOrPlainValidatorType',
|
||||
_V2Validator,
|
||||
_PartialClsOrStaticMethod,
|
||||
bound=Union[_V2Validator, _PartialClsOrStaticMethod],
|
||||
)
|
||||
_V2WrapValidatorType = TypeVar('_V2WrapValidatorType', _V2WrapValidator, _PartialClsOrStaticMethod)
|
||||
|
||||
|
||||
@overload
|
||||
def field_validator(
|
||||
__field: str,
|
||||
*fields: str,
|
||||
mode: Literal['before', 'after', 'plain'] = ...,
|
||||
check_fields: bool | None = ...,
|
||||
) -> Callable[[_V2BeforeAfterOrPlainValidatorType], _V2BeforeAfterOrPlainValidatorType]:
|
||||
...
|
||||
|
||||
|
||||
@overload
|
||||
def field_validator(
|
||||
__field: str,
|
||||
*fields: str,
|
||||
mode: Literal['wrap'],
|
||||
check_fields: bool | None = ...,
|
||||
) -> Callable[[_V2WrapValidatorType], _V2WrapValidatorType]:
|
||||
...
|
||||
|
||||
_V2WrapValidatorType = TypeVar('_V2WrapValidatorType', bound=Union[_V2WrapValidator, _PartialClsOrStaticMethod])
|
||||
|
||||
FieldValidatorModes: TypeAlias = Literal['before', 'after', 'wrap', 'plain']
|
||||
|
||||
|
||||
@overload
|
||||
def field_validator(
|
||||
__field: str,
|
||||
field: str,
|
||||
/,
|
||||
*fields: str,
|
||||
mode: Literal['wrap'],
|
||||
check_fields: bool | None = ...,
|
||||
json_schema_input_type: Any = ...,
|
||||
) -> Callable[[_V2WrapValidatorType], _V2WrapValidatorType]: ...
|
||||
|
||||
|
||||
@overload
|
||||
def field_validator(
|
||||
field: str,
|
||||
/,
|
||||
*fields: str,
|
||||
mode: Literal['before', 'plain'],
|
||||
check_fields: bool | None = ...,
|
||||
json_schema_input_type: Any = ...,
|
||||
) -> Callable[[_V2BeforeAfterOrPlainValidatorType], _V2BeforeAfterOrPlainValidatorType]: ...
|
||||
|
||||
|
||||
@overload
|
||||
def field_validator(
|
||||
field: str,
|
||||
/,
|
||||
*fields: str,
|
||||
mode: Literal['after'] = ...,
|
||||
check_fields: bool | None = ...,
|
||||
) -> Callable[[_V2BeforeAfterOrPlainValidatorType], _V2BeforeAfterOrPlainValidatorType]: ...
|
||||
|
||||
|
||||
def field_validator(
|
||||
field: str,
|
||||
/,
|
||||
*fields: str,
|
||||
mode: FieldValidatorModes = 'after',
|
||||
check_fields: bool | None = None,
|
||||
json_schema_input_type: Any = PydanticUndefined,
|
||||
) -> Callable[[Any], Any]:
|
||||
"""Usage docs: https://docs.pydantic.dev/2.5/concepts/validators/#field-validators
|
||||
"""!!! abstract "Usage Documentation"
|
||||
[field validators](../concepts/validators.md#field-validators)
|
||||
|
||||
Decorate methods on the class indicating that they should be used to validate fields.
|
||||
|
||||
Example usage:
|
||||
```py
|
||||
```python
|
||||
from typing import Any
|
||||
|
||||
from pydantic import (
|
||||
@@ -325,11 +457,14 @@ def field_validator(
|
||||
For more in depth examples, see [Field Validators](../concepts/validators.md#field-validators).
|
||||
|
||||
Args:
|
||||
__field: The first field the `field_validator` should be called on; this is separate
|
||||
field: The first field the `field_validator` should be called on; this is separate
|
||||
from `fields` to ensure an error is raised if you don't pass at least one.
|
||||
*fields: Additional field(s) the `field_validator` should be called on.
|
||||
mode: Specifies whether to validate the fields before or after validation.
|
||||
check_fields: Whether to check that the fields actually exist on the model.
|
||||
json_schema_input_type: The input type of the function. This is only used to generate
|
||||
the appropriate JSON Schema (in validation mode) and can only specified
|
||||
when `mode` is either `'before'`, `'plain'` or `'wrap'`.
|
||||
|
||||
Returns:
|
||||
A decorator that can be used to decorate a function to be used as a field_validator.
|
||||
@@ -340,13 +475,23 @@ def field_validator(
|
||||
- If the args passed to `@field_validator` as fields are not strings.
|
||||
- If `@field_validator` applied to instance methods.
|
||||
"""
|
||||
if isinstance(__field, FunctionType):
|
||||
if isinstance(field, FunctionType):
|
||||
raise PydanticUserError(
|
||||
'`@field_validator` should be used with fields and keyword arguments, not bare. '
|
||||
"E.g. usage should be `@validator('<field_name>', ...)`",
|
||||
code='validator-no-fields',
|
||||
)
|
||||
fields = __field, *fields
|
||||
|
||||
if mode not in ('before', 'plain', 'wrap') and json_schema_input_type is not PydanticUndefined:
|
||||
raise PydanticUserError(
|
||||
f"`json_schema_input_type` can't be used when mode is set to {mode!r}",
|
||||
code='validator-input-type',
|
||||
)
|
||||
|
||||
if json_schema_input_type is PydanticUndefined and mode == 'plain':
|
||||
json_schema_input_type = Any
|
||||
|
||||
fields = field, *fields
|
||||
if not all(isinstance(field, str) for field in fields):
|
||||
raise PydanticUserError(
|
||||
'`@field_validator` fields should be passed as separate string args. '
|
||||
@@ -355,7 +500,7 @@ def field_validator(
|
||||
)
|
||||
|
||||
def dec(
|
||||
f: Callable[..., Any] | staticmethod[Any, Any] | classmethod[Any, Any, Any]
|
||||
f: Callable[..., Any] | staticmethod[Any, Any] | classmethod[Any, Any, Any],
|
||||
) -> _decorators.PydanticDescriptorProxy[Any]:
|
||||
if _decorators.is_instance_method_from_sig(f):
|
||||
raise PydanticUserError(
|
||||
@@ -365,7 +510,9 @@ def field_validator(
|
||||
# auto apply the @classmethod decorator
|
||||
f = _decorators.ensure_classmethod_based_on_signature(f)
|
||||
|
||||
dec_info = _decorators.FieldValidatorDecoratorInfo(fields=fields, mode=mode, check_fields=check_fields)
|
||||
dec_info = _decorators.FieldValidatorDecoratorInfo(
|
||||
fields=fields, mode=mode, check_fields=check_fields, json_schema_input_type=json_schema_input_type
|
||||
)
|
||||
return _decorators.PydanticDescriptorProxy(f, dec_info)
|
||||
|
||||
return dec
|
||||
@@ -375,17 +522,20 @@ _ModelType = TypeVar('_ModelType')
|
||||
_ModelTypeCo = TypeVar('_ModelTypeCo', covariant=True)
|
||||
|
||||
|
||||
class ModelWrapValidatorHandler(_core_schema.ValidatorFunctionWrapHandler, Protocol[_ModelTypeCo]):
|
||||
"""@model_validator decorated function handler argument type. This is used when `mode='wrap'`."""
|
||||
class ModelWrapValidatorHandler(core_schema.ValidatorFunctionWrapHandler, Protocol[_ModelTypeCo]):
|
||||
"""`@model_validator` decorated function handler argument type. This is used when `mode='wrap'`."""
|
||||
|
||||
def __call__( # noqa: D102
|
||||
self, input_value: Any, outer_location: str | int | None = None
|
||||
self,
|
||||
value: Any,
|
||||
outer_location: str | int | None = None,
|
||||
/,
|
||||
) -> _ModelTypeCo: # pragma: no cover
|
||||
...
|
||||
|
||||
|
||||
class ModelWrapValidatorWithoutInfo(Protocol[_ModelType]):
|
||||
"""A @model_validator decorated function signature.
|
||||
"""A `@model_validator` decorated function signature.
|
||||
This is used when `mode='wrap'` and the function does not have info argument.
|
||||
"""
|
||||
|
||||
@@ -395,14 +545,14 @@ class ModelWrapValidatorWithoutInfo(Protocol[_ModelType]):
|
||||
# this can be a dict, a model instance
|
||||
# or anything else that gets passed to validate_python
|
||||
# thus validators _must_ handle all cases
|
||||
__value: Any,
|
||||
__handler: ModelWrapValidatorHandler[_ModelType],
|
||||
) -> _ModelType:
|
||||
...
|
||||
value: Any,
|
||||
handler: ModelWrapValidatorHandler[_ModelType],
|
||||
/,
|
||||
) -> _ModelType: ...
|
||||
|
||||
|
||||
class ModelWrapValidator(Protocol[_ModelType]):
|
||||
"""A @model_validator decorated function signature. This is used when `mode='wrap'`."""
|
||||
"""A `@model_validator` decorated function signature. This is used when `mode='wrap'`."""
|
||||
|
||||
def __call__( # noqa: D102
|
||||
self,
|
||||
@@ -410,15 +560,30 @@ class ModelWrapValidator(Protocol[_ModelType]):
|
||||
# this can be a dict, a model instance
|
||||
# or anything else that gets passed to validate_python
|
||||
# thus validators _must_ handle all cases
|
||||
__value: Any,
|
||||
__handler: ModelWrapValidatorHandler[_ModelType],
|
||||
__info: _core_schema.ValidationInfo,
|
||||
) -> _ModelType:
|
||||
...
|
||||
value: Any,
|
||||
handler: ModelWrapValidatorHandler[_ModelType],
|
||||
info: core_schema.ValidationInfo,
|
||||
/,
|
||||
) -> _ModelType: ...
|
||||
|
||||
|
||||
class FreeModelBeforeValidatorWithoutInfo(Protocol):
|
||||
"""A `@model_validator` decorated function signature.
|
||||
This is used when `mode='before'` and the function does not have info argument.
|
||||
"""
|
||||
|
||||
def __call__( # noqa: D102
|
||||
self,
|
||||
# this can be a dict, a model instance
|
||||
# or anything else that gets passed to validate_python
|
||||
# thus validators _must_ handle all cases
|
||||
value: Any,
|
||||
/,
|
||||
) -> Any: ...
|
||||
|
||||
|
||||
class ModelBeforeValidatorWithoutInfo(Protocol):
|
||||
"""A @model_validator decorated function signature.
|
||||
"""A `@model_validator` decorated function signature.
|
||||
This is used when `mode='before'` and the function does not have info argument.
|
||||
"""
|
||||
|
||||
@@ -428,9 +593,23 @@ class ModelBeforeValidatorWithoutInfo(Protocol):
|
||||
# this can be a dict, a model instance
|
||||
# or anything else that gets passed to validate_python
|
||||
# thus validators _must_ handle all cases
|
||||
__value: Any,
|
||||
) -> Any:
|
||||
...
|
||||
value: Any,
|
||||
/,
|
||||
) -> Any: ...
|
||||
|
||||
|
||||
class FreeModelBeforeValidator(Protocol):
|
||||
"""A `@model_validator` decorated function signature. This is used when `mode='before'`."""
|
||||
|
||||
def __call__( # noqa: D102
|
||||
self,
|
||||
# this can be a dict, a model instance
|
||||
# or anything else that gets passed to validate_python
|
||||
# thus validators _must_ handle all cases
|
||||
value: Any,
|
||||
info: core_schema.ValidationInfo[Any],
|
||||
/,
|
||||
) -> Any: ...
|
||||
|
||||
|
||||
class ModelBeforeValidator(Protocol):
|
||||
@@ -442,10 +621,10 @@ class ModelBeforeValidator(Protocol):
|
||||
# this can be a dict, a model instance
|
||||
# or anything else that gets passed to validate_python
|
||||
# thus validators _must_ handle all cases
|
||||
__value: Any,
|
||||
__info: _core_schema.ValidationInfo,
|
||||
) -> Any:
|
||||
...
|
||||
value: Any,
|
||||
info: core_schema.ValidationInfo[Any],
|
||||
/,
|
||||
) -> Any: ...
|
||||
|
||||
|
||||
ModelAfterValidatorWithoutInfo = Callable[[_ModelType], _ModelType]
|
||||
@@ -453,11 +632,13 @@ ModelAfterValidatorWithoutInfo = Callable[[_ModelType], _ModelType]
|
||||
have info argument.
|
||||
"""
|
||||
|
||||
ModelAfterValidator = Callable[[_ModelType, _core_schema.ValidationInfo], _ModelType]
|
||||
ModelAfterValidator = Callable[[_ModelType, core_schema.ValidationInfo[Any]], _ModelType]
|
||||
"""A `@model_validator` decorated function signature. This is used when `mode='after'`."""
|
||||
|
||||
_AnyModelWrapValidator = Union[ModelWrapValidator[_ModelType], ModelWrapValidatorWithoutInfo[_ModelType]]
|
||||
_AnyModeBeforeValidator = Union[ModelBeforeValidator, ModelBeforeValidatorWithoutInfo]
|
||||
_AnyModelBeforeValidator = Union[
|
||||
FreeModelBeforeValidator, ModelBeforeValidator, FreeModelBeforeValidatorWithoutInfo, ModelBeforeValidatorWithoutInfo
|
||||
]
|
||||
_AnyModelAfterValidator = Union[ModelAfterValidator[_ModelType], ModelAfterValidatorWithoutInfo[_ModelType]]
|
||||
|
||||
|
||||
@@ -467,16 +648,16 @@ def model_validator(
|
||||
mode: Literal['wrap'],
|
||||
) -> Callable[
|
||||
[_AnyModelWrapValidator[_ModelType]], _decorators.PydanticDescriptorProxy[_decorators.ModelValidatorDecoratorInfo]
|
||||
]:
|
||||
...
|
||||
]: ...
|
||||
|
||||
|
||||
@overload
|
||||
def model_validator(
|
||||
*,
|
||||
mode: Literal['before'],
|
||||
) -> Callable[[_AnyModeBeforeValidator], _decorators.PydanticDescriptorProxy[_decorators.ModelValidatorDecoratorInfo]]:
|
||||
...
|
||||
) -> Callable[
|
||||
[_AnyModelBeforeValidator], _decorators.PydanticDescriptorProxy[_decorators.ModelValidatorDecoratorInfo]
|
||||
]: ...
|
||||
|
||||
|
||||
@overload
|
||||
@@ -485,33 +666,33 @@ def model_validator(
|
||||
mode: Literal['after'],
|
||||
) -> Callable[
|
||||
[_AnyModelAfterValidator[_ModelType]], _decorators.PydanticDescriptorProxy[_decorators.ModelValidatorDecoratorInfo]
|
||||
]:
|
||||
...
|
||||
]: ...
|
||||
|
||||
|
||||
def model_validator(
|
||||
*,
|
||||
mode: Literal['wrap', 'before', 'after'],
|
||||
) -> Any:
|
||||
"""Usage docs: https://docs.pydantic.dev/2.5/concepts/validators/#model-validators
|
||||
"""!!! abstract "Usage Documentation"
|
||||
[Model Validators](../concepts/validators.md#model-validators)
|
||||
|
||||
Decorate model methods for validation purposes.
|
||||
|
||||
Example usage:
|
||||
```py
|
||||
from typing import Optional
|
||||
```python
|
||||
from typing_extensions import Self
|
||||
|
||||
from pydantic import BaseModel, ValidationError, model_validator
|
||||
|
||||
class Square(BaseModel):
|
||||
width: float
|
||||
height: float
|
||||
width: float
|
||||
height: float
|
||||
|
||||
@model_validator(mode='after')
|
||||
def verify_square(self) -> 'Rectangle':
|
||||
if self.width != self.height:
|
||||
raise ValueError('width and height do not match')
|
||||
return self
|
||||
@model_validator(mode='after')
|
||||
def verify_square(self) -> Self:
|
||||
if self.width != self.height:
|
||||
raise ValueError('width and height do not match')
|
||||
return self
|
||||
|
||||
s = Square(width=1, height=1)
|
||||
print(repr(s))
|
||||
@@ -523,8 +704,7 @@ def model_validator(
|
||||
print(e)
|
||||
'''
|
||||
1 validation error for Square
|
||||
__root__
|
||||
width and height do not match (type=value_error)
|
||||
Value error, width and height do not match [type=value_error, input_value={'width': 1, 'height': 2}, input_type=dict]
|
||||
'''
|
||||
```
|
||||
|
||||
@@ -539,8 +719,18 @@ def model_validator(
|
||||
"""
|
||||
|
||||
def dec(f: Any) -> _decorators.PydanticDescriptorProxy[Any]:
|
||||
# auto apply the @classmethod decorator
|
||||
# auto apply the @classmethod decorator. NOTE: in V3, do not apply the conversion for 'after' validators:
|
||||
f = _decorators.ensure_classmethod_based_on_signature(f)
|
||||
if mode == 'after' and isinstance(f, classmethod):
|
||||
warnings.warn(
|
||||
category=PydanticDeprecatedSince212,
|
||||
message=(
|
||||
"Using `@model_validator` with mode='after' on a classmethod is deprecated. Instead, use an instance method. "
|
||||
f'See the documentation at https://docs.pydantic.dev/{version_short()}/concepts/validators/#model-after-validator.'
|
||||
),
|
||||
stacklevel=2,
|
||||
)
|
||||
|
||||
dec_info = _decorators.ModelValidatorDecoratorInfo(mode=mode)
|
||||
return _decorators.PydanticDescriptorProxy(f, dec_info)
|
||||
|
||||
@@ -561,7 +751,7 @@ else:
|
||||
'''Generic type for annotating a type that is an instance of a given class.
|
||||
|
||||
Example:
|
||||
```py
|
||||
```python
|
||||
from pydantic import BaseModel, InstanceOf
|
||||
|
||||
class Foo:
|
||||
@@ -639,8 +829,10 @@ else:
|
||||
|
||||
@classmethod
|
||||
def __get_pydantic_core_schema__(cls, source: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema:
|
||||
original_schema = handler(source)
|
||||
metadata = _core_metadata.build_metadata_dict(js_annotation_functions=[lambda _c, h: h(original_schema)])
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter('ignore', ArbitraryTypeWarning)
|
||||
original_schema = handler(source)
|
||||
metadata = {'pydantic_js_annotation_functions': [lambda _c, h: h(original_schema)]}
|
||||
return core_schema.any_schema(
|
||||
metadata=metadata,
|
||||
serialization=core_schema.wrap_serializer_function_ser_schema(
|
||||
@@ -649,3 +841,53 @@ else:
|
||||
)
|
||||
|
||||
__hash__ = object.__hash__
|
||||
|
||||
|
||||
_FromTypeT = TypeVar('_FromTypeT')
|
||||
|
||||
|
||||
class ValidateAs:
|
||||
"""A helper class to validate a custom type from a type that is natively supported by Pydantic.
|
||||
|
||||
Args:
|
||||
from_type: The type natively supported by Pydantic to use to perform validation.
|
||||
instantiation_hook: A callable taking the validated type as an argument, and returning
|
||||
the populated custom type.
|
||||
|
||||
Example:
|
||||
```python {lint="skip"}
|
||||
from typing import Annotated
|
||||
|
||||
from pydantic import BaseModel, TypeAdapter, ValidateAs
|
||||
|
||||
class MyCls:
|
||||
def __init__(self, a: int) -> None:
|
||||
self.a = a
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"MyCls(a={self.a})"
|
||||
|
||||
class Model(BaseModel):
|
||||
a: int
|
||||
|
||||
|
||||
ta = TypeAdapter(
|
||||
Annotated[MyCls, ValidateAs(Model, lambda v: MyCls(a=v.a))]
|
||||
)
|
||||
|
||||
print(ta.validate_python({'a': 1}))
|
||||
#> MyCls(a=1)
|
||||
```
|
||||
"""
|
||||
|
||||
# TODO: make use of PEP 747
|
||||
def __init__(self, from_type: type[_FromTypeT], /, instantiation_hook: Callable[[_FromTypeT], Any]) -> None:
|
||||
self.from_type = from_type
|
||||
self.instantiation_hook = instantiation_hook
|
||||
|
||||
def __get_pydantic_core_schema__(self, source: Any, handler: GetCoreSchemaHandler) -> core_schema.CoreSchema:
|
||||
schema = handler(self.from_type)
|
||||
return core_schema.no_info_after_validator_function(
|
||||
self.instantiation_hook,
|
||||
schema=schema,
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user