This commit is contained in:
Iliyan Angelov
2025-12-01 06:50:10 +02:00
parent 91f51bc6fe
commit 62c1fe5951
4682 changed files with 544807 additions and 31208 deletions

View File

@@ -0,0 +1,52 @@
# Natural Language Toolkit: Machine Translation
#
# Copyright (C) 2001-2025 NLTK Project
# Author: Edward Loper <edloper@gmail.com>
# Steven Bird <stevenbird1@gmail.com>
# Peter Ljunglöf <peter.ljunglof@gu.se>
# Tom Aarsen <>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
"""
NLTK Tree Package
This package may be used for representing hierarchical language
structures, such as syntax trees and morphological trees.
"""
# TODO: add LabelledTree (can be used for dependency trees)
from nltk.tree.immutable import (
ImmutableMultiParentedTree,
ImmutableParentedTree,
ImmutableProbabilisticTree,
ImmutableTree,
)
from nltk.tree.parented import MultiParentedTree, ParentedTree
from nltk.tree.parsing import bracket_parse, sinica_parse
from nltk.tree.prettyprinter import TreePrettyPrinter
from nltk.tree.probabilistic import ProbabilisticTree
from nltk.tree.transforms import (
chomsky_normal_form,
collapse_unary,
un_chomsky_normal_form,
)
from nltk.tree.tree import Tree
__all__ = [
"ImmutableMultiParentedTree",
"ImmutableParentedTree",
"ImmutableProbabilisticTree",
"ImmutableTree",
"MultiParentedTree",
"ParentedTree",
"bracket_parse",
"sinica_parse",
"TreePrettyPrinter",
"ProbabilisticTree",
"chomsky_normal_form",
"collapse_unary",
"un_chomsky_normal_form",
"Tree",
]

View File

@@ -0,0 +1,124 @@
# Natural Language Toolkit: Text Trees
#
# Copyright (C) 2001-2025 NLTK Project
# Author: Edward Loper <edloper@gmail.com>
# Steven Bird <stevenbird1@gmail.com>
# Peter Ljunglöf <peter.ljunglof@gu.se>
# Tom Aarsen <>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
from nltk.probability import ProbabilisticMixIn
from nltk.tree.parented import MultiParentedTree, ParentedTree
from nltk.tree.tree import Tree
class ImmutableTree(Tree):
def __init__(self, node, children=None):
super().__init__(node, children)
# Precompute our hash value. This ensures that we're really
# immutable. It also means we only have to calculate it once.
try:
self._hash = hash((self._label, tuple(self)))
except (TypeError, ValueError) as e:
raise ValueError(
"%s: node value and children " "must be immutable" % type(self).__name__
) from e
def __setitem__(self, index, value):
raise ValueError("%s may not be modified" % type(self).__name__)
def __setslice__(self, i, j, value):
raise ValueError("%s may not be modified" % type(self).__name__)
def __delitem__(self, index):
raise ValueError("%s may not be modified" % type(self).__name__)
def __delslice__(self, i, j):
raise ValueError("%s may not be modified" % type(self).__name__)
def __iadd__(self, other):
raise ValueError("%s may not be modified" % type(self).__name__)
def __imul__(self, other):
raise ValueError("%s may not be modified" % type(self).__name__)
def append(self, v):
raise ValueError("%s may not be modified" % type(self).__name__)
def extend(self, v):
raise ValueError("%s may not be modified" % type(self).__name__)
def pop(self, v=None):
raise ValueError("%s may not be modified" % type(self).__name__)
def remove(self, v):
raise ValueError("%s may not be modified" % type(self).__name__)
def reverse(self):
raise ValueError("%s may not be modified" % type(self).__name__)
def sort(self):
raise ValueError("%s may not be modified" % type(self).__name__)
def __hash__(self):
return self._hash
def set_label(self, value):
"""
Set the node label. This will only succeed the first time the
node label is set, which should occur in ImmutableTree.__init__().
"""
if hasattr(self, "_label"):
raise ValueError("%s may not be modified" % type(self).__name__)
self._label = value
class ImmutableProbabilisticTree(ImmutableTree, ProbabilisticMixIn):
def __init__(self, node, children=None, **prob_kwargs):
ImmutableTree.__init__(self, node, children)
ProbabilisticMixIn.__init__(self, **prob_kwargs)
self._hash = hash((self._label, tuple(self), self.prob()))
# We have to patch up these methods to make them work right:
def _frozen_class(self):
return ImmutableProbabilisticTree
def __repr__(self):
return f"{Tree.__repr__(self)} [{self.prob()}]"
def __str__(self):
return f"{self.pformat(margin=60)} [{self.prob()}]"
def copy(self, deep=False):
if not deep:
return type(self)(self._label, self, prob=self.prob())
else:
return type(self).convert(self)
@classmethod
def convert(cls, val):
if isinstance(val, Tree):
children = [cls.convert(child) for child in val]
if isinstance(val, ProbabilisticMixIn):
return cls(val._label, children, prob=val.prob())
else:
return cls(val._label, children, prob=1.0)
else:
return val
class ImmutableParentedTree(ImmutableTree, ParentedTree):
pass
class ImmutableMultiParentedTree(ImmutableTree, MultiParentedTree):
pass
__all__ = [
"ImmutableProbabilisticTree",
"ImmutableTree",
"ImmutableParentedTree",
"ImmutableMultiParentedTree",
]

View File

@@ -0,0 +1,590 @@
# Natural Language Toolkit: Text Trees
#
# Copyright (C) 2001-2025 NLTK Project
# Author: Edward Loper <edloper@gmail.com>
# Steven Bird <stevenbird1@gmail.com>
# Peter Ljunglöf <peter.ljunglof@gu.se>
# Tom Aarsen <>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
import warnings
from abc import ABCMeta, abstractmethod
from nltk.tree.tree import Tree
from nltk.util import slice_bounds
######################################################################
## Parented trees
######################################################################
class AbstractParentedTree(Tree, metaclass=ABCMeta):
"""
An abstract base class for a ``Tree`` that automatically maintains
pointers to parent nodes. These parent pointers are updated
whenever any change is made to a tree's structure. Two subclasses
are currently defined:
- ``ParentedTree`` is used for tree structures where each subtree
has at most one parent. This class should be used in cases
where there is no"sharing" of subtrees.
- ``MultiParentedTree`` is used for tree structures where a
subtree may have zero or more parents. This class should be
used in cases where subtrees may be shared.
Subclassing
===========
The ``AbstractParentedTree`` class redefines all operations that
modify a tree's structure to call two methods, which are used by
subclasses to update parent information:
- ``_setparent()`` is called whenever a new child is added.
- ``_delparent()`` is called whenever a child is removed.
"""
def __init__(self, node, children=None):
super().__init__(node, children)
# If children is None, the tree is read from node, and
# all parents will be set during parsing.
if children is not None:
# Otherwise we have to set the parent of the children.
# Iterate over self, and *not* children, because children
# might be an iterator.
for i, child in enumerate(self):
if isinstance(child, Tree):
self._setparent(child, i, dry_run=True)
for i, child in enumerate(self):
if isinstance(child, Tree):
self._setparent(child, i)
# ////////////////////////////////////////////////////////////
# Parent management
# ////////////////////////////////////////////////////////////
@abstractmethod
def _setparent(self, child, index, dry_run=False):
"""
Update the parent pointer of ``child`` to point to ``self``. This
method is only called if the type of ``child`` is ``Tree``;
i.e., it is not called when adding a leaf to a tree. This method
is always called before the child is actually added to the
child list of ``self``.
:type child: Tree
:type index: int
:param index: The index of ``child`` in ``self``.
:raise TypeError: If ``child`` is a tree with an impropriate
type. Typically, if ``child`` is a tree, then its type needs
to match the type of ``self``. This prevents mixing of
different tree types (single-parented, multi-parented, and
non-parented).
:param dry_run: If true, the don't actually set the child's
parent pointer; just check for any error conditions, and
raise an exception if one is found.
"""
@abstractmethod
def _delparent(self, child, index):
"""
Update the parent pointer of ``child`` to not point to self. This
method is only called if the type of ``child`` is ``Tree``; i.e., it
is not called when removing a leaf from a tree. This method
is always called before the child is actually removed from the
child list of ``self``.
:type child: Tree
:type index: int
:param index: The index of ``child`` in ``self``.
"""
# ////////////////////////////////////////////////////////////
# Methods that add/remove children
# ////////////////////////////////////////////////////////////
# Every method that adds or removes a child must make
# appropriate calls to _setparent() and _delparent().
def __delitem__(self, index):
# del ptree[start:stop]
if isinstance(index, slice):
start, stop, step = slice_bounds(self, index, allow_step=True)
# Clear all the children pointers.
for i in range(start, stop, step):
if isinstance(self[i], Tree):
self._delparent(self[i], i)
# Delete the children from our child list.
super().__delitem__(index)
# del ptree[i]
elif isinstance(index, int):
if index < 0:
index += len(self)
if index < 0:
raise IndexError("index out of range")
# Clear the child's parent pointer.
if isinstance(self[index], Tree):
self._delparent(self[index], index)
# Remove the child from our child list.
super().__delitem__(index)
elif isinstance(index, (list, tuple)):
# del ptree[()]
if len(index) == 0:
raise IndexError("The tree position () may not be deleted.")
# del ptree[(i,)]
elif len(index) == 1:
del self[index[0]]
# del ptree[i1, i2, i3]
else:
del self[index[0]][index[1:]]
else:
raise TypeError(
"%s indices must be integers, not %s"
% (type(self).__name__, type(index).__name__)
)
def __setitem__(self, index, value):
# ptree[start:stop] = value
if isinstance(index, slice):
start, stop, step = slice_bounds(self, index, allow_step=True)
# make a copy of value, in case it's an iterator
if not isinstance(value, (list, tuple)):
value = list(value)
# Check for any error conditions, so we can avoid ending
# up in an inconsistent state if an error does occur.
for i, child in enumerate(value):
if isinstance(child, Tree):
self._setparent(child, start + i * step, dry_run=True)
# clear the child pointers of all parents we're removing
for i in range(start, stop, step):
if isinstance(self[i], Tree):
self._delparent(self[i], i)
# set the child pointers of the new children. We do this
# after clearing *all* child pointers, in case we're e.g.
# reversing the elements in a tree.
for i, child in enumerate(value):
if isinstance(child, Tree):
self._setparent(child, start + i * step)
# finally, update the content of the child list itself.
super().__setitem__(index, value)
# ptree[i] = value
elif isinstance(index, int):
if index < 0:
index += len(self)
if index < 0:
raise IndexError("index out of range")
# if the value is not changing, do nothing.
if value is self[index]:
return
# Set the new child's parent pointer.
if isinstance(value, Tree):
self._setparent(value, index)
# Remove the old child's parent pointer
if isinstance(self[index], Tree):
self._delparent(self[index], index)
# Update our child list.
super().__setitem__(index, value)
elif isinstance(index, (list, tuple)):
# ptree[()] = value
if len(index) == 0:
raise IndexError("The tree position () may not be assigned to.")
# ptree[(i,)] = value
elif len(index) == 1:
self[index[0]] = value
# ptree[i1, i2, i3] = value
else:
self[index[0]][index[1:]] = value
else:
raise TypeError(
"%s indices must be integers, not %s"
% (type(self).__name__, type(index).__name__)
)
def append(self, child):
if isinstance(child, Tree):
self._setparent(child, len(self))
super().append(child)
def extend(self, children):
for child in children:
if isinstance(child, Tree):
self._setparent(child, len(self))
super().append(child)
def insert(self, index, child):
# Handle negative indexes. Note that if index < -len(self),
# we do *not* raise an IndexError, unlike __getitem__. This
# is done for consistency with list.__getitem__ and list.index.
if index < 0:
index += len(self)
if index < 0:
index = 0
# Set the child's parent, and update our child list.
if isinstance(child, Tree):
self._setparent(child, index)
super().insert(index, child)
def pop(self, index=-1):
if index < 0:
index += len(self)
if index < 0:
raise IndexError("index out of range")
if isinstance(self[index], Tree):
self._delparent(self[index], index)
return super().pop(index)
# n.b.: like `list`, this is done by equality, not identity!
# To remove a specific child, use del ptree[i].
def remove(self, child):
index = self.index(child)
if isinstance(self[index], Tree):
self._delparent(self[index], index)
super().remove(child)
# We need to implement __getslice__ and friends, even though
# they're deprecated, because otherwise list.__getslice__ will get
# called (since we're subclassing from list). Just delegate to
# __getitem__ etc., but use max(0, start) and max(0, stop) because
# because negative indices are already handled *before*
# __getslice__ is called; and we don't want to double-count them.
if hasattr(list, "__getslice__"):
def __getslice__(self, start, stop):
return self.__getitem__(slice(max(0, start), max(0, stop)))
def __delslice__(self, start, stop):
return self.__delitem__(slice(max(0, start), max(0, stop)))
def __setslice__(self, start, stop, value):
return self.__setitem__(slice(max(0, start), max(0, stop)), value)
def __getnewargs__(self):
"""Method used by the pickle module when un-pickling.
This method provides the arguments passed to ``__new__``
upon un-pickling. Without this method, ParentedTree instances
cannot be pickled and unpickled in Python 3.7+ onwards.
:return: Tuple of arguments for ``__new__``, i.e. the label
and the children of this node.
:rtype: Tuple[Any, List[AbstractParentedTree]]
"""
return (self._label, list(self))
class ParentedTree(AbstractParentedTree):
"""
A ``Tree`` that automatically maintains parent pointers for
single-parented trees. The following are methods for querying
the structure of a parented tree: ``parent``, ``parent_index``,
``left_sibling``, ``right_sibling``, ``root``, ``treeposition``.
Each ``ParentedTree`` may have at most one parent. In
particular, subtrees may not be shared. Any attempt to reuse a
single ``ParentedTree`` as a child of more than one parent (or
as multiple children of the same parent) will cause a
``ValueError`` exception to be raised.
``ParentedTrees`` should never be used in the same tree as ``Trees``
or ``MultiParentedTrees``. Mixing tree implementations may result
in incorrect parent pointers and in ``TypeError`` exceptions.
"""
def __init__(self, node, children=None):
self._parent = None
"""The parent of this Tree, or None if it has no parent."""
super().__init__(node, children)
if children is None:
# If children is None, the tree is read from node.
# After parsing, the parent of the immediate children
# will point to an intermediate tree, not self.
# We fix this by brute force:
for i, child in enumerate(self):
if isinstance(child, Tree):
child._parent = None
self._setparent(child, i)
def _frozen_class(self):
from nltk.tree.immutable import ImmutableParentedTree
return ImmutableParentedTree
def copy(self, deep=False):
if not deep:
warnings.warn(
f"{self.__class__.__name__} objects do not support shallow copies. Defaulting to a deep copy."
)
return super().copy(deep=True)
# /////////////////////////////////////////////////////////////////
# Methods
# /////////////////////////////////////////////////////////////////
def parent(self):
"""The parent of this tree, or None if it has no parent."""
return self._parent
def parent_index(self):
"""
The index of this tree in its parent. I.e.,
``ptree.parent()[ptree.parent_index()] is ptree``. Note that
``ptree.parent_index()`` is not necessarily equal to
``ptree.parent.index(ptree)``, since the ``index()`` method
returns the first child that is equal to its argument.
"""
if self._parent is None:
return None
for i, child in enumerate(self._parent):
if child is self:
return i
assert False, "expected to find self in self._parent!"
def left_sibling(self):
"""The left sibling of this tree, or None if it has none."""
parent_index = self.parent_index()
if self._parent and parent_index > 0:
return self._parent[parent_index - 1]
return None # no left sibling
def right_sibling(self):
"""The right sibling of this tree, or None if it has none."""
parent_index = self.parent_index()
if self._parent and parent_index < (len(self._parent) - 1):
return self._parent[parent_index + 1]
return None # no right sibling
def root(self):
"""
The root of this tree. I.e., the unique ancestor of this tree
whose parent is None. If ``ptree.parent()`` is None, then
``ptree`` is its own root.
"""
root = self
while root.parent() is not None:
root = root.parent()
return root
def treeposition(self):
"""
The tree position of this tree, relative to the root of the
tree. I.e., ``ptree.root[ptree.treeposition] is ptree``.
"""
if self.parent() is None:
return ()
else:
return self.parent().treeposition() + (self.parent_index(),)
# /////////////////////////////////////////////////////////////////
# Parent Management
# /////////////////////////////////////////////////////////////////
def _delparent(self, child, index):
# Sanity checks
assert isinstance(child, ParentedTree)
assert self[index] is child
assert child._parent is self
# Delete child's parent pointer.
child._parent = None
def _setparent(self, child, index, dry_run=False):
# If the child's type is incorrect, then complain.
if not isinstance(child, ParentedTree):
raise TypeError("Can not insert a non-ParentedTree into a ParentedTree")
# If child already has a parent, then complain.
if hasattr(child, "_parent") and child._parent is not None:
raise ValueError("Can not insert a subtree that already has a parent.")
# Set child's parent pointer & index.
if not dry_run:
child._parent = self
class MultiParentedTree(AbstractParentedTree):
"""
A ``Tree`` that automatically maintains parent pointers for
multi-parented trees. The following are methods for querying the
structure of a multi-parented tree: ``parents()``, ``parent_indices()``,
``left_siblings()``, ``right_siblings()``, ``roots``, ``treepositions``.
Each ``MultiParentedTree`` may have zero or more parents. In
particular, subtrees may be shared. If a single
``MultiParentedTree`` is used as multiple children of the same
parent, then that parent will appear multiple times in its
``parents()`` method.
``MultiParentedTrees`` should never be used in the same tree as
``Trees`` or ``ParentedTrees``. Mixing tree implementations may
result in incorrect parent pointers and in ``TypeError`` exceptions.
"""
def __init__(self, node, children=None):
self._parents = []
"""A list of this tree's parents. This list should not
contain duplicates, even if a parent contains this tree
multiple times."""
super().__init__(node, children)
if children is None:
# If children is None, the tree is read from node.
# After parsing, the parent(s) of the immediate children
# will point to an intermediate tree, not self.
# We fix this by brute force:
for i, child in enumerate(self):
if isinstance(child, Tree):
child._parents = []
self._setparent(child, i)
def _frozen_class(self):
from nltk.tree.immutable import ImmutableMultiParentedTree
return ImmutableMultiParentedTree
# /////////////////////////////////////////////////////////////////
# Methods
# /////////////////////////////////////////////////////////////////
def parents(self):
"""
The set of parents of this tree. If this tree has no parents,
then ``parents`` is the empty set. To check if a tree is used
as multiple children of the same parent, use the
``parent_indices()`` method.
:type: list(MultiParentedTree)
"""
return list(self._parents)
def left_siblings(self):
"""
A list of all left siblings of this tree, in any of its parent
trees. A tree may be its own left sibling if it is used as
multiple contiguous children of the same parent. A tree may
appear multiple times in this list if it is the left sibling
of this tree with respect to multiple parents.
:type: list(MultiParentedTree)
"""
return [
parent[index - 1]
for (parent, index) in self._get_parent_indices()
if index > 0
]
def right_siblings(self):
"""
A list of all right siblings of this tree, in any of its parent
trees. A tree may be its own right sibling if it is used as
multiple contiguous children of the same parent. A tree may
appear multiple times in this list if it is the right sibling
of this tree with respect to multiple parents.
:type: list(MultiParentedTree)
"""
return [
parent[index + 1]
for (parent, index) in self._get_parent_indices()
if index < (len(parent) - 1)
]
def _get_parent_indices(self):
return [
(parent, index)
for parent in self._parents
for index, child in enumerate(parent)
if child is self
]
def roots(self):
"""
The set of all roots of this tree. This set is formed by
tracing all possible parent paths until trees with no parents
are found.
:type: list(MultiParentedTree)
"""
return list(self._get_roots_helper({}).values())
def _get_roots_helper(self, result):
if self._parents:
for parent in self._parents:
parent._get_roots_helper(result)
else:
result[id(self)] = self
return result
def parent_indices(self, parent):
"""
Return a list of the indices where this tree occurs as a child
of ``parent``. If this child does not occur as a child of
``parent``, then the empty list is returned. The following is
always true::
for parent_index in ptree.parent_indices(parent):
parent[parent_index] is ptree
"""
if parent not in self._parents:
return []
else:
return [index for (index, child) in enumerate(parent) if child is self]
def treepositions(self, root):
"""
Return a list of all tree positions that can be used to reach
this multi-parented tree starting from ``root``. I.e., the
following is always true::
for treepos in ptree.treepositions(root):
root[treepos] is ptree
"""
if self is root:
return [()]
else:
return [
treepos + (index,)
for parent in self._parents
for treepos in parent.treepositions(root)
for (index, child) in enumerate(parent)
if child is self
]
# /////////////////////////////////////////////////////////////////
# Parent Management
# /////////////////////////////////////////////////////////////////
def _delparent(self, child, index):
# Sanity checks
assert isinstance(child, MultiParentedTree)
assert self[index] is child
assert len([p for p in child._parents if p is self]) == 1
# If the only copy of child in self is at index, then delete
# self from child's parent list.
for i, c in enumerate(self):
if c is child and i != index:
break
else:
child._parents.remove(self)
def _setparent(self, child, index, dry_run=False):
# If the child's type is incorrect, then complain.
if not isinstance(child, MultiParentedTree):
raise TypeError(
"Can not insert a non-MultiParentedTree into a MultiParentedTree"
)
# Add self as a parent pointer if it's not already listed.
if not dry_run:
for parent in child._parents:
if parent is self:
break
else:
child._parents.append(self)
__all__ = [
"ParentedTree",
"MultiParentedTree",
]

View File

@@ -0,0 +1,66 @@
# Natural Language Toolkit: Text Trees
#
# Copyright (C) 2001-2025 NLTK Project
# Author: Edward Loper <edloper@gmail.com>
# Steven Bird <stevenbird1@gmail.com>
# Peter Ljunglöf <peter.ljunglof@gu.se>
# Tom Aarsen <>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
import re
from nltk.tree.tree import Tree
######################################################################
## Parsing
######################################################################
def bracket_parse(s):
"""
Use Tree.read(s, remove_empty_top_bracketing=True) instead.
"""
raise NameError("Use Tree.read(s, remove_empty_top_bracketing=True) instead.")
def sinica_parse(s):
"""
Parse a Sinica Treebank string and return a tree. Trees are represented as nested brackettings,
as shown in the following example (X represents a Chinese character):
S(goal:NP(Head:Nep:XX)|theme:NP(Head:Nhaa:X)|quantity:Dab:X|Head:VL2:X)#0(PERIODCATEGORY)
:return: A tree corresponding to the string representation.
:rtype: Tree
:param s: The string to be converted
:type s: str
"""
tokens = re.split(r"([()| ])", s)
for i in range(len(tokens)):
if tokens[i] == "(":
tokens[i - 1], tokens[i] = (
tokens[i],
tokens[i - 1],
) # pull nonterminal inside parens
elif ":" in tokens[i]:
fields = tokens[i].split(":")
if len(fields) == 2: # non-terminal
tokens[i] = fields[1]
else:
tokens[i] = "(" + fields[-2] + " " + fields[-1] + ")"
elif tokens[i] == "|":
tokens[i] = ""
treebank_string = " ".join(tokens)
return Tree.fromstring(treebank_string, remove_empty_top_bracketing=True)
# s = re.sub(r'^#[^\s]*\s', '', s) # remove leading identifier
# s = re.sub(r'\w+:', '', s) # remove role tags
# return s
__all__ = [
"bracket_parse",
"sinica_parse",
]

View File

@@ -0,0 +1,627 @@
# Natural Language Toolkit: ASCII visualization of NLTK trees
#
# Copyright (C) 2001-2025 NLTK Project
# Author: Andreas van Cranenburgh <A.W.vanCranenburgh@uva.nl>
# Peter Ljunglöf <peter.ljunglof@gu.se>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
"""
Pretty-printing of discontinuous trees.
Adapted from the disco-dop project, by Andreas van Cranenburgh.
https://github.com/andreasvc/disco-dop
Interesting reference (not used for this code):
T. Eschbach et al., Orth. Hypergraph Drawing, Journal of
Graph Algorithms and Applications, 10(2) 141--157 (2006)149.
https://jgaa.info/accepted/2006/EschbachGuentherBecker2006.10.2.pdf
"""
import re
try:
from html import escape
except ImportError:
from cgi import escape
from collections import defaultdict
from operator import itemgetter
from nltk.tree.tree import Tree
from nltk.util import OrderedDict
ANSICOLOR = {
"black": 30,
"red": 31,
"green": 32,
"yellow": 33,
"blue": 34,
"magenta": 35,
"cyan": 36,
"white": 37,
}
class TreePrettyPrinter:
"""
Pretty-print a tree in text format, either as ASCII or Unicode.
The tree can be a normal tree, or discontinuous.
``TreePrettyPrinter(tree, sentence=None, highlight=())``
creates an object from which different visualizations can be created.
:param tree: a Tree object.
:param sentence: a list of words (strings). If `sentence` is given,
`tree` must contain integers as leaves, which are taken as indices
in `sentence`. Using this you can display a discontinuous tree.
:param highlight: Optionally, a sequence of Tree objects in `tree` which
should be highlighted. Has the effect of only applying colors to nodes
in this sequence (nodes should be given as Tree objects, terminals as
indices).
>>> from nltk.tree import Tree
>>> tree = Tree.fromstring('(S (NP Mary) (VP walks))')
>>> print(TreePrettyPrinter(tree).text())
... # doctest: +NORMALIZE_WHITESPACE
S
____|____
NP VP
| |
Mary walks
"""
def __init__(self, tree, sentence=None, highlight=()):
if sentence is None:
leaves = tree.leaves()
if (
leaves
and all(len(a) > 0 for a in tree.subtrees())
and all(isinstance(a, int) for a in leaves)
):
sentence = [str(a) for a in leaves]
else:
# this deals with empty nodes (frontier non-terminals)
# and multiple/mixed terminals under non-terminals.
tree = tree.copy(True)
sentence = []
for a in tree.subtrees():
if len(a) == 0:
a.append(len(sentence))
sentence.append(None)
elif any(not isinstance(b, Tree) for b in a):
for n, b in enumerate(a):
if not isinstance(b, Tree):
a[n] = len(sentence)
if type(b) == tuple:
b = "/".join(b)
sentence.append("%s" % b)
self.nodes, self.coords, self.edges, self.highlight = self.nodecoords(
tree, sentence, highlight
)
def __str__(self):
return self.text()
def __repr__(self):
return "<TreePrettyPrinter with %d nodes>" % len(self.nodes)
@staticmethod
def nodecoords(tree, sentence, highlight):
"""
Produce coordinates of nodes on a grid.
Objective:
- Produce coordinates for a non-overlapping placement of nodes and
horizontal lines.
- Order edges so that crossing edges cross a minimal number of previous
horizontal lines (never vertical lines).
Approach:
- bottom up level order traversal (start at terminals)
- at each level, identify nodes which cannot be on the same row
- identify nodes which cannot be in the same column
- place nodes into a grid at (row, column)
- order child-parent edges with crossing edges last
Coordinates are (row, column); the origin (0, 0) is at the top left;
the root node is on row 0. Coordinates do not consider the size of a
node (which depends on font, &c), so the width of a column of the grid
should be automatically determined by the element with the greatest
width in that column. Alternatively, the integer coordinates could be
converted to coordinates in which the distances between adjacent nodes
are non-uniform.
Produces tuple (nodes, coords, edges, highlighted) where:
- nodes[id]: Tree object for the node with this integer id
- coords[id]: (n, m) coordinate where to draw node with id in the grid
- edges[id]: parent id of node with this id (ordered dictionary)
- highlighted: set of ids that should be highlighted
"""
def findcell(m, matrix, startoflevel, children):
"""
Find vacant row, column index for node ``m``.
Iterate over current rows for this level (try lowest first)
and look for cell between first and last child of this node,
add new row to level if no free row available.
"""
candidates = [a for _, a in children[m]]
minidx, maxidx = min(candidates), max(candidates)
leaves = tree[m].leaves()
center = scale * sum(leaves) // len(leaves) # center of gravity
if minidx < maxidx and not minidx < center < maxidx:
center = sum(candidates) // len(candidates)
if max(candidates) - min(candidates) > 2 * scale:
center -= center % scale # round to unscaled coordinate
if minidx < maxidx and not minidx < center < maxidx:
center += scale
if ids[m] == 0:
startoflevel = len(matrix)
for rowidx in range(startoflevel, len(matrix) + 1):
if rowidx == len(matrix): # need to add a new row
matrix.append(
[
vertline if a not in (corner, None) else None
for a in matrix[-1]
]
)
row = matrix[rowidx]
if len(children[m]) == 1: # place unaries directly above child
return rowidx, next(iter(children[m]))[1]
elif all(
a is None or a == vertline
for a in row[min(candidates) : max(candidates) + 1]
):
# find free column
for n in range(scale):
i = j = center + n
while j > minidx or i < maxidx:
if i < maxidx and (
matrix[rowidx][i] is None or i in candidates
):
return rowidx, i
elif j > minidx and (
matrix[rowidx][j] is None or j in candidates
):
return rowidx, j
i += scale
j -= scale
raise ValueError(
"could not find a free cell for:\n%s\n%s"
"min=%d; max=%d" % (tree[m], minidx, maxidx, dumpmatrix())
)
def dumpmatrix():
"""Dump matrix contents for debugging purposes."""
return "\n".join(
"%2d: %s" % (n, " ".join(("%2r" % i)[:2] for i in row))
for n, row in enumerate(matrix)
)
leaves = tree.leaves()
if not all(isinstance(n, int) for n in leaves):
raise ValueError("All leaves must be integer indices.")
if len(leaves) != len(set(leaves)):
raise ValueError("Indices must occur at most once.")
if not all(0 <= n < len(sentence) for n in leaves):
raise ValueError(
"All leaves must be in the interval 0..n "
"with n=len(sentence)\ntokens: %d indices: "
"%r\nsentence: %s" % (len(sentence), tree.leaves(), sentence)
)
vertline, corner = -1, -2 # constants
tree = tree.copy(True)
for a in tree.subtrees():
a.sort(key=lambda n: min(n.leaves()) if isinstance(n, Tree) else n)
scale = 2
crossed = set()
# internal nodes and lexical nodes (no frontiers)
positions = tree.treepositions()
maxdepth = max(map(len, positions)) + 1
childcols = defaultdict(set)
matrix = [[None] * (len(sentence) * scale)]
nodes = {}
ids = {a: n for n, a in enumerate(positions)}
highlighted_nodes = {
n for a, n in ids.items() if not highlight or tree[a] in highlight
}
levels = {n: [] for n in range(maxdepth - 1)}
terminals = []
for a in positions:
node = tree[a]
if isinstance(node, Tree):
levels[maxdepth - node.height()].append(a)
else:
terminals.append(a)
for n in levels:
levels[n].sort(key=lambda n: max(tree[n].leaves()) - min(tree[n].leaves()))
terminals.sort()
positions = set(positions)
for m in terminals:
i = int(tree[m]) * scale
assert matrix[0][i] is None, (matrix[0][i], m, i)
matrix[0][i] = ids[m]
nodes[ids[m]] = sentence[tree[m]]
if nodes[ids[m]] is None:
nodes[ids[m]] = "..."
highlighted_nodes.discard(ids[m])
positions.remove(m)
childcols[m[:-1]].add((0, i))
# add other nodes centered on their children,
# if the center is already taken, back off
# to the left and right alternately, until an empty cell is found.
for n in sorted(levels, reverse=True):
nodesatdepth = levels[n]
startoflevel = len(matrix)
matrix.append(
[vertline if a not in (corner, None) else None for a in matrix[-1]]
)
for m in nodesatdepth: # [::-1]:
if n < maxdepth - 1 and childcols[m]:
_, pivot = min(childcols[m], key=itemgetter(1))
if {
a[:-1]
for row in matrix[:-1]
for a in row[:pivot]
if isinstance(a, tuple)
} & {
a[:-1]
for row in matrix[:-1]
for a in row[pivot:]
if isinstance(a, tuple)
}:
crossed.add(m)
rowidx, i = findcell(m, matrix, startoflevel, childcols)
positions.remove(m)
# block positions where children of this node branch out
for _, x in childcols[m]:
matrix[rowidx][x] = corner
# assert m == () or matrix[rowidx][i] in (None, corner), (
# matrix[rowidx][i], m, str(tree), ' '.join(sentence))
# node itself
matrix[rowidx][i] = ids[m]
nodes[ids[m]] = tree[m]
# add column to the set of children for its parent
if len(m) > 0:
childcols[m[:-1]].add((rowidx, i))
assert len(positions) == 0
# remove unused columns, right to left
for m in range(scale * len(sentence) - 1, -1, -1):
if not any(isinstance(row[m], (Tree, int)) for row in matrix):
for row in matrix:
del row[m]
# remove unused rows, reverse
matrix = [
row
for row in reversed(matrix)
if not all(a is None or a == vertline for a in row)
]
# collect coordinates of nodes
coords = {}
for n, _ in enumerate(matrix):
for m, i in enumerate(matrix[n]):
if isinstance(i, int) and i >= 0:
coords[i] = n, m
# move crossed edges last
positions = sorted(
(a for level in levels.values() for a in level),
key=lambda a: a[:-1] in crossed,
)
# collect edges from node to node
edges = OrderedDict()
for i in reversed(positions):
for j, _ in enumerate(tree[i]):
edges[ids[i + (j,)]] = ids[i]
return nodes, coords, edges, highlighted_nodes
def text(
self,
nodedist=1,
unicodelines=False,
html=False,
ansi=False,
nodecolor="blue",
leafcolor="red",
funccolor="green",
abbreviate=None,
maxwidth=16,
):
"""
:return: ASCII art for a discontinuous tree.
:param unicodelines: whether to use Unicode line drawing characters
instead of plain (7-bit) ASCII.
:param html: whether to wrap output in html code (default plain text).
:param ansi: whether to produce colors with ANSI escape sequences
(only effective when html==False).
:param leafcolor, nodecolor: specify colors of leaves and phrasal
nodes; effective when either html or ansi is True.
:param abbreviate: if True, abbreviate labels longer than 5 characters.
If integer, abbreviate labels longer than `abbr` characters.
:param maxwidth: maximum number of characters before a label starts to
wrap; pass None to disable.
"""
if abbreviate == True:
abbreviate = 5
if unicodelines:
horzline = "\u2500"
leftcorner = "\u250c"
rightcorner = "\u2510"
vertline = " \u2502 "
tee = horzline + "\u252C" + horzline
bottom = horzline + "\u2534" + horzline
cross = horzline + "\u253c" + horzline
ellipsis = "\u2026"
else:
horzline = "_"
leftcorner = rightcorner = " "
vertline = " | "
tee = 3 * horzline
cross = bottom = "_|_"
ellipsis = "."
def crosscell(cur, x=vertline):
"""Overwrite center of this cell with a vertical branch."""
splitl = len(cur) - len(cur) // 2 - len(x) // 2 - 1
lst = list(cur)
lst[splitl : splitl + len(x)] = list(x)
return "".join(lst)
result = []
matrix = defaultdict(dict)
maxnodewith = defaultdict(lambda: 3)
maxnodeheight = defaultdict(lambda: 1)
maxcol = 0
minchildcol = {}
maxchildcol = {}
childcols = defaultdict(set)
labels = {}
wrapre = re.compile(
"(.{%d,%d}\\b\\W*|.{%d})" % (maxwidth - 4, maxwidth, maxwidth)
)
# collect labels and coordinates
for a in self.nodes:
row, column = self.coords[a]
matrix[row][column] = a
maxcol = max(maxcol, column)
label = (
self.nodes[a].label()
if isinstance(self.nodes[a], Tree)
else self.nodes[a]
)
if abbreviate and len(label) > abbreviate:
label = label[:abbreviate] + ellipsis
if maxwidth and len(label) > maxwidth:
label = wrapre.sub(r"\1\n", label).strip()
label = label.split("\n")
maxnodeheight[row] = max(maxnodeheight[row], len(label))
maxnodewith[column] = max(maxnodewith[column], max(map(len, label)))
labels[a] = label
if a not in self.edges:
continue # e.g., root
parent = self.edges[a]
childcols[parent].add((row, column))
minchildcol[parent] = min(minchildcol.get(parent, column), column)
maxchildcol[parent] = max(maxchildcol.get(parent, column), column)
# bottom up level order traversal
for row in sorted(matrix, reverse=True):
noderows = [
["".center(maxnodewith[col]) for col in range(maxcol + 1)]
for _ in range(maxnodeheight[row])
]
branchrow = ["".center(maxnodewith[col]) for col in range(maxcol + 1)]
for col in matrix[row]:
n = matrix[row][col]
node = self.nodes[n]
text = labels[n]
if isinstance(node, Tree):
# draw horizontal branch towards children for this node
if n in minchildcol and minchildcol[n] < maxchildcol[n]:
i, j = minchildcol[n], maxchildcol[n]
a, b = (maxnodewith[i] + 1) // 2 - 1, maxnodewith[j] // 2
branchrow[i] = ((" " * a) + leftcorner).ljust(
maxnodewith[i], horzline
)
branchrow[j] = (rightcorner + (" " * b)).rjust(
maxnodewith[j], horzline
)
for i in range(minchildcol[n] + 1, maxchildcol[n]):
if i == col and any(a == i for _, a in childcols[n]):
line = cross
elif i == col:
line = bottom
elif any(a == i for _, a in childcols[n]):
line = tee
else:
line = horzline
branchrow[i] = line.center(maxnodewith[i], horzline)
else: # if n and n in minchildcol:
branchrow[col] = crosscell(branchrow[col])
text = [a.center(maxnodewith[col]) for a in text]
color = nodecolor if isinstance(node, Tree) else leafcolor
if isinstance(node, Tree) and node.label().startswith("-"):
color = funccolor
if html:
text = [escape(a, quote=False) for a in text]
if n in self.highlight:
text = [f"<font color={color}>{a}</font>" for a in text]
elif ansi and n in self.highlight:
text = ["\x1b[%d;1m%s\x1b[0m" % (ANSICOLOR[color], a) for a in text]
for x in range(maxnodeheight[row]):
# draw vertical lines in partially filled multiline node
# labels, but only if it's not a frontier node.
noderows[x][col] = (
text[x]
if x < len(text)
else (vertline if childcols[n] else " ").center(
maxnodewith[col], " "
)
)
# for each column, if there is a node below us which has a parent
# above us, draw a vertical branch in that column.
if row != max(matrix):
for n, (childrow, col) in self.coords.items():
if n > 0 and self.coords[self.edges[n]][0] < row < childrow:
branchrow[col] = crosscell(branchrow[col])
if col not in matrix[row]:
for noderow in noderows:
noderow[col] = crosscell(noderow[col])
branchrow = [
a + ((a[-1] if a[-1] != " " else b[0]) * nodedist)
for a, b in zip(branchrow, branchrow[1:] + [" "])
]
result.append("".join(branchrow))
result.extend(
(" " * nodedist).join(noderow) for noderow in reversed(noderows)
)
return "\n".join(reversed(result)) + "\n"
def svg(self, nodecolor="blue", leafcolor="red", funccolor="green"):
"""
:return: SVG representation of a tree.
"""
fontsize = 12
hscale = 40
vscale = 25
hstart = vstart = 20
width = max(col for _, col in self.coords.values())
height = max(row for row, _ in self.coords.values())
result = [
'<svg version="1.1" xmlns="http://www.w3.org/2000/svg" '
'width="%dem" height="%dem" viewBox="%d %d %d %d">'
% (
width * 3,
height * 2.5,
-hstart,
-vstart,
width * hscale + 3 * hstart,
height * vscale + 3 * vstart,
)
]
children = defaultdict(set)
for n in self.nodes:
if n:
children[self.edges[n]].add(n)
# horizontal branches from nodes to children
for node in self.nodes:
if not children[node]:
continue
y, x = self.coords[node]
x *= hscale
y *= vscale
x += hstart
y += vstart + fontsize // 2
childx = [self.coords[c][1] for c in children[node]]
xmin = hstart + hscale * min(childx)
xmax = hstart + hscale * max(childx)
result.append(
'\t<polyline style="stroke:black; stroke-width:1; fill:none;" '
'points="%g,%g %g,%g" />' % (xmin, y, xmax, y)
)
result.append(
'\t<polyline style="stroke:black; stroke-width:1; fill:none;" '
'points="%g,%g %g,%g" />' % (x, y, x, y - fontsize // 3)
)
# vertical branches from children to parents
for child, parent in self.edges.items():
y, _ = self.coords[parent]
y *= vscale
y += vstart + fontsize // 2
childy, childx = self.coords[child]
childx *= hscale
childy *= vscale
childx += hstart
childy += vstart - fontsize
result += [
'\t<polyline style="stroke:white; stroke-width:10; fill:none;"'
' points="%g,%g %g,%g" />' % (childx, childy, childx, y + 5),
'\t<polyline style="stroke:black; stroke-width:1; fill:none;"'
' points="%g,%g %g,%g" />' % (childx, childy, childx, y),
]
# write nodes with coordinates
for n, (row, column) in self.coords.items():
node = self.nodes[n]
x = column * hscale + hstart
y = row * vscale + vstart
if n in self.highlight:
color = nodecolor if isinstance(node, Tree) else leafcolor
if isinstance(node, Tree) and node.label().startswith("-"):
color = funccolor
else:
color = "black"
result += [
'\t<text style="text-anchor: middle; fill: %s; '
'font-size: %dpx;" x="%g" y="%g">%s</text>'
% (
color,
fontsize,
x,
y,
escape(
node.label() if isinstance(node, Tree) else node, quote=False
),
)
]
result += ["</svg>"]
return "\n".join(result)
def test():
"""Do some tree drawing tests."""
def print_tree(n, tree, sentence=None, ansi=True, **xargs):
print()
print('{}: "{}"'.format(n, " ".join(sentence or tree.leaves())))
print(tree)
print()
drawtree = TreePrettyPrinter(tree, sentence)
try:
print(drawtree.text(unicodelines=ansi, ansi=ansi, **xargs))
except (UnicodeDecodeError, UnicodeEncodeError):
print(drawtree.text(unicodelines=False, ansi=False, **xargs))
from nltk.corpus import treebank
for n in [0, 1440, 1591, 2771, 2170]:
tree = treebank.parsed_sents()[n]
print_tree(n, tree, nodedist=2, maxwidth=8)
print()
print("ASCII version:")
print(TreePrettyPrinter(tree).text(nodedist=2))
tree = Tree.fromstring(
"(top (punct 8) (smain (noun 0) (verb 1) (inf (verb 5) (inf (verb 6) "
"(conj (inf (pp (prep 2) (np (det 3) (noun 4))) (verb 7)) (inf (verb 9)) "
"(vg 10) (inf (verb 11)))))) (punct 12))",
read_leaf=int,
)
sentence = (
"Ze had met haar moeder kunnen gaan winkelen ,"
" zwemmen of terrassen .".split()
)
print_tree("Discontinuous tree", tree, sentence, nodedist=2)
__all__ = ["TreePrettyPrinter"]
if __name__ == "__main__":
test()

View File

@@ -0,0 +1,74 @@
# Natural Language Toolkit: Text Trees
#
# Copyright (C) 2001-2025 NLTK Project
# Author: Edward Loper <edloper@gmail.com>
# Steven Bird <stevenbird1@gmail.com>
# Peter Ljunglöf <peter.ljunglof@gu.se>
# Tom Aarsen <>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
from nltk.internals import raise_unorderable_types
from nltk.probability import ProbabilisticMixIn
from nltk.tree.immutable import ImmutableProbabilisticTree
from nltk.tree.tree import Tree
######################################################################
## Probabilistic trees
######################################################################
class ProbabilisticTree(Tree, ProbabilisticMixIn):
def __init__(self, node, children=None, **prob_kwargs):
Tree.__init__(self, node, children)
ProbabilisticMixIn.__init__(self, **prob_kwargs)
# We have to patch up these methods to make them work right:
def _frozen_class(self):
return ImmutableProbabilisticTree
def __repr__(self):
return f"{Tree.__repr__(self)} (p={self.prob()!r})"
def __str__(self):
return f"{self.pformat(margin=60)} (p={self.prob():.6g})"
def copy(self, deep=False):
if not deep:
return type(self)(self._label, self, prob=self.prob())
else:
return type(self).convert(self)
@classmethod
def convert(cls, val):
if isinstance(val, Tree):
children = [cls.convert(child) for child in val]
if isinstance(val, ProbabilisticMixIn):
return cls(val._label, children, prob=val.prob())
else:
return cls(val._label, children, prob=1.0)
else:
return val
def __eq__(self, other):
return self.__class__ is other.__class__ and (
self._label,
list(self),
self.prob(),
) == (other._label, list(other), other.prob())
def __lt__(self, other):
if not isinstance(other, Tree):
raise_unorderable_types("<", self, other)
if self.__class__ is other.__class__:
return (self._label, list(self), self.prob()) < (
other._label,
list(other),
other.prob(),
)
else:
return self.__class__.__name__ < other.__class__.__name__
__all__ = ["ProbabilisticTree"]

View File

@@ -0,0 +1,337 @@
# Natural Language Toolkit: Tree Transformations
#
# Copyright (C) 2005-2007 Oregon Graduate Institute
# Author: Nathan Bodenstab <bodenstab@cslu.ogi.edu>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
r"""
A collection of methods for tree (grammar) transformations used
in parsing natural language.
Although many of these methods are technically grammar transformations
(ie. Chomsky Norm Form), when working with treebanks it is much more
natural to visualize these modifications in a tree structure. Hence,
we will do all transformation directly to the tree itself.
Transforming the tree directly also allows us to do parent annotation.
A grammar can then be simply induced from the modified tree.
The following is a short tutorial on the available transformations.
1. Chomsky Normal Form (binarization)
It is well known that any grammar has a Chomsky Normal Form (CNF)
equivalent grammar where CNF is defined by every production having
either two non-terminals or one terminal on its right hand side.
When we have hierarchically structured data (ie. a treebank), it is
natural to view this in terms of productions where the root of every
subtree is the head (left hand side) of the production and all of
its children are the right hand side constituents. In order to
convert a tree into CNF, we simply need to ensure that every subtree
has either two subtrees as children (binarization), or one leaf node
(non-terminal). In order to binarize a subtree with more than two
children, we must introduce artificial nodes.
There are two popular methods to convert a tree into CNF: left
factoring and right factoring. The following example demonstrates
the difference between them. Example::
Original Right-Factored Left-Factored
A A A
/ | \ / \ / \
B C D ==> B A|<C-D> OR A|<B-C> D
/ \ / \
C D B C
2. Parent Annotation
In addition to binarizing the tree, there are two standard
modifications to node labels we can do in the same traversal: parent
annotation and Markov order-N smoothing (or sibling smoothing).
The purpose of parent annotation is to refine the probabilities of
productions by adding a small amount of context. With this simple
addition, a CYK (inside-outside, dynamic programming chart parse)
can improve from 74% to 79% accuracy. A natural generalization from
parent annotation is to grandparent annotation and beyond. The
tradeoff becomes accuracy gain vs. computational complexity. We
must also keep in mind data sparcity issues. Example::
Original Parent Annotation
A A^<?>
/ | \ / \
B C D ==> B^<A> A|<C-D>^<?> where ? is the
/ \ parent of A
C^<A> D^<A>
3. Markov order-N smoothing
Markov smoothing combats data sparcity issues as well as decreasing
computational requirements by limiting the number of children
included in artificial nodes. In practice, most people use an order
2 grammar. Example::
Original No Smoothing Markov order 1 Markov order 2 etc.
__A__ A A A
/ /|\ \ / \ / \ / \
B C D E F ==> B A|<C-D-E-F> ==> B A|<C> ==> B A|<C-D>
/ \ / \ / \
C ... C ... C ...
Annotation decisions can be thought about in the vertical direction
(parent, grandparent, etc) and the horizontal direction (number of
siblings to keep). Parameters to the following functions specify
these values. For more information see:
Dan Klein and Chris Manning (2003) "Accurate Unlexicalized
Parsing", ACL-03. https://www.aclweb.org/anthology/P03-1054
4. Unary Collapsing
Collapse unary productions (ie. subtrees with a single child) into a
new non-terminal (Tree node). This is useful when working with
algorithms that do not allow unary productions, yet you do not wish
to lose the parent information. Example::
A
|
B ==> A+B
/ \ / \
C D C D
"""
from nltk.tree.tree import Tree
def chomsky_normal_form(
tree, factor="right", horzMarkov=None, vertMarkov=0, childChar="|", parentChar="^"
):
# assume all subtrees have homogeneous children
# assume all terminals have no siblings
# A semi-hack to have elegant looking code below. As a result,
# any subtree with a branching factor greater than 999 will be incorrectly truncated.
if horzMarkov is None:
horzMarkov = 999
# Traverse the tree depth-first keeping a list of ancestor nodes to the root.
# I chose not to use the tree.treepositions() method since it requires
# two traversals of the tree (one to get the positions, one to iterate
# over them) and node access time is proportional to the height of the node.
# This method is 7x faster which helps when parsing 40,000 sentences.
nodeList = [(tree, [tree.label()])]
while nodeList != []:
node, parent = nodeList.pop()
if isinstance(node, Tree):
# parent annotation
parentString = ""
originalNode = node.label()
if vertMarkov != 0 and node != tree and isinstance(node[0], Tree):
parentString = "{}<{}>".format(parentChar, "-".join(parent))
node.set_label(node.label() + parentString)
parent = [originalNode] + parent[: vertMarkov - 1]
# add children to the agenda before we mess with them
for child in node:
nodeList.append((child, parent))
# chomsky normal form factorization
if len(node) > 2:
childNodes = [child.label() for child in node]
nodeCopy = node.copy()
node[0:] = [] # delete the children
curNode = node
numChildren = len(nodeCopy)
for i in range(1, numChildren - 1):
if factor == "right":
newHead = "{}{}<{}>{}".format(
originalNode,
childChar,
"-".join(
childNodes[i : min([i + horzMarkov, numChildren])]
),
parentString,
) # create new head
newNode = Tree(newHead, [])
curNode[0:] = [nodeCopy.pop(0), newNode]
else:
newHead = "{}{}<{}>{}".format(
originalNode,
childChar,
"-".join(
childNodes[max([numChildren - i - horzMarkov, 0]) : -i]
),
parentString,
)
newNode = Tree(newHead, [])
curNode[0:] = [newNode, nodeCopy.pop()]
curNode = newNode
curNode[0:] = [child for child in nodeCopy]
def un_chomsky_normal_form(
tree, expandUnary=True, childChar="|", parentChar="^", unaryChar="+"
):
# Traverse the tree-depth first keeping a pointer to the parent for modification purposes.
nodeList = [(tree, [])]
while nodeList != []:
node, parent = nodeList.pop()
if isinstance(node, Tree):
# if the node contains the 'childChar' character it means that
# it is an artificial node and can be removed, although we still need
# to move its children to its parent
childIndex = node.label().find(childChar)
if childIndex != -1:
nodeIndex = parent.index(node)
parent.remove(parent[nodeIndex])
# Generated node was on the left if the nodeIndex is 0 which
# means the grammar was left factored. We must insert the children
# at the beginning of the parent's children
if nodeIndex == 0:
parent.insert(0, node[0])
parent.insert(1, node[1])
else:
parent.extend([node[0], node[1]])
# parent is now the current node so the children of parent will be added to the agenda
node = parent
else:
parentIndex = node.label().find(parentChar)
if parentIndex != -1:
# strip the node name of the parent annotation
node.set_label(node.label()[:parentIndex])
# expand collapsed unary productions
if expandUnary == True:
unaryIndex = node.label().find(unaryChar)
if unaryIndex != -1:
newNode = Tree(
node.label()[unaryIndex + 1 :], [i for i in node]
)
node.set_label(node.label()[:unaryIndex])
node[0:] = [newNode]
for child in node:
nodeList.append((child, node))
def collapse_unary(tree, collapsePOS=False, collapseRoot=False, joinChar="+"):
"""
Collapse subtrees with a single child (ie. unary productions)
into a new non-terminal (Tree node) joined by 'joinChar'.
This is useful when working with algorithms that do not allow
unary productions, and completely removing the unary productions
would require loss of useful information. The Tree is modified
directly (since it is passed by reference) and no value is returned.
:param tree: The Tree to be collapsed
:type tree: Tree
:param collapsePOS: 'False' (default) will not collapse the parent of leaf nodes (ie.
Part-of-Speech tags) since they are always unary productions
:type collapsePOS: bool
:param collapseRoot: 'False' (default) will not modify the root production
if it is unary. For the Penn WSJ treebank corpus, this corresponds
to the TOP -> productions.
:type collapseRoot: bool
:param joinChar: A string used to connect collapsed node values (default = "+")
:type joinChar: str
"""
if collapseRoot == False and isinstance(tree, Tree) and len(tree) == 1:
nodeList = [tree[0]]
else:
nodeList = [tree]
# depth-first traversal of tree
while nodeList != []:
node = nodeList.pop()
if isinstance(node, Tree):
if (
len(node) == 1
and isinstance(node[0], Tree)
and (collapsePOS == True or isinstance(node[0, 0], Tree))
):
node.set_label(node.label() + joinChar + node[0].label())
node[0:] = [child for child in node[0]]
# since we assigned the child's children to the current node,
# evaluate the current node again
nodeList.append(node)
else:
for child in node:
nodeList.append(child)
#################################################################
# Demonstration
#################################################################
def demo():
"""
A demonstration showing how each tree transform can be used.
"""
from copy import deepcopy
from nltk.draw.tree import draw_trees
from nltk.tree.tree import Tree
# original tree from WSJ bracketed text
sentence = """(TOP
(S
(S
(VP
(VBN Turned)
(ADVP (RB loose))
(PP
(IN in)
(NP
(NP (NNP Shane) (NNP Longman) (POS 's))
(NN trading)
(NN room)))))
(, ,)
(NP (DT the) (NN yuppie) (NNS dealers))
(VP (AUX do) (NP (NP (RB little)) (ADJP (RB right))))
(. .)))"""
t = Tree.fromstring(sentence, remove_empty_top_bracketing=True)
# collapse subtrees with only one child
collapsedTree = deepcopy(t)
collapse_unary(collapsedTree)
# convert the tree to CNF
cnfTree = deepcopy(collapsedTree)
chomsky_normal_form(cnfTree)
# convert the tree to CNF with parent annotation (one level) and horizontal smoothing of order two
parentTree = deepcopy(collapsedTree)
chomsky_normal_form(parentTree, horzMarkov=2, vertMarkov=1)
# convert the tree back to its original form (used to make CYK results comparable)
original = deepcopy(parentTree)
un_chomsky_normal_form(original)
# convert tree back to bracketed text
sentence2 = original.pprint()
print(sentence)
print(sentence2)
print("Sentences the same? ", sentence == sentence2)
draw_trees(t, collapsedTree, cnfTree, parentTree, original)
if __name__ == "__main__":
demo()
__all__ = ["chomsky_normal_form", "un_chomsky_normal_form", "collapse_unary"]

View File

@@ -0,0 +1,982 @@
# Natural Language Toolkit: Text Trees
#
# Copyright (C) 2001-2025 NLTK Project
# Author: Edward Loper <edloper@gmail.com>
# Steven Bird <stevenbird1@gmail.com>
# Peter Ljunglöf <peter.ljunglof@gu.se>
# Nathan Bodenstab <bodenstab@cslu.ogi.edu> (tree transforms)
# Eric Kafe <kafe.eric@gmail.com> (Tree.fromlist())
# Mohaned mashaly<mohaned.mashaly12@gmail.com> (Deprecating methods)
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
"""
Class for representing hierarchical language structures, such as
syntax trees and morphological trees.
"""
import re
from nltk.grammar import Nonterminal, Production
from nltk.internals import deprecated
######################################################################
## Trees
######################################################################
class Tree(list):
r"""
A Tree represents a hierarchical grouping of leaves and subtrees.
For example, each constituent in a syntax tree is represented by a single Tree.
A tree's children are encoded as a list of leaves and subtrees,
where a leaf is a basic (non-tree) value; and a subtree is a
nested Tree.
>>> from nltk.tree import Tree
>>> print(Tree(1, [2, Tree(3, [4]), 5]))
(1 2 (3 4) 5)
>>> vp = Tree('VP', [Tree('V', ['saw']),
... Tree('NP', ['him'])])
>>> s = Tree('S', [Tree('NP', ['I']), vp])
>>> print(s)
(S (NP I) (VP (V saw) (NP him)))
>>> print(s[1])
(VP (V saw) (NP him))
>>> print(s[1,1])
(NP him)
>>> t = Tree.fromstring("(S (NP I) (VP (V saw) (NP him)))")
>>> s == t
True
>>> t[1][1].set_label('X')
>>> t[1][1].label()
'X'
>>> print(t)
(S (NP I) (VP (V saw) (X him)))
>>> t[0], t[1,1] = t[1,1], t[0]
>>> print(t)
(S (X him) (VP (V saw) (NP I)))
The length of a tree is the number of children it has.
>>> len(t)
2
The set_label() and label() methods allow individual constituents
to be labeled. For example, syntax trees use this label to specify
phrase tags, such as "NP" and "VP".
Several Tree methods use "tree positions" to specify
children or descendants of a tree. Tree positions are defined as
follows:
- The tree position *i* specifies a Tree's *i*\ th child.
- The tree position ``()`` specifies the Tree itself.
- If *p* is the tree position of descendant *d*, then
*p+i* specifies the *i*\ th child of *d*.
I.e., every tree position is either a single index *i*,
specifying ``tree[i]``; or a sequence *i1, i2, ..., iN*,
specifying ``tree[i1][i2]...[iN]``.
Construct a new tree. This constructor can be called in one
of two ways:
- ``Tree(label, children)`` constructs a new tree with the
specified label and list of children.
- ``Tree.fromstring(s)`` constructs a new tree by parsing the string ``s``.
"""
def __init__(self, node, children=None):
if children is None:
raise TypeError(
"%s: Expected a node value and child list " % type(self).__name__
)
elif isinstance(children, str):
raise TypeError(
"%s() argument 2 should be a list, not a "
"string" % type(self).__name__
)
else:
list.__init__(self, children)
self._label = node
# ////////////////////////////////////////////////////////////
# Comparison operators
# ////////////////////////////////////////////////////////////
def __eq__(self, other):
return self.__class__ is other.__class__ and (self._label, list(self)) == (
other._label,
list(other),
)
def __lt__(self, other):
if not isinstance(other, Tree):
# raise_unorderable_types("<", self, other)
# Sometimes children can be pure strings,
# so we need to be able to compare with non-trees:
return self.__class__.__name__ < other.__class__.__name__
elif self.__class__ is other.__class__:
return (self._label, list(self)) < (other._label, list(other))
else:
return self.__class__.__name__ < other.__class__.__name__
# @total_ordering doesn't work here, since the class inherits from a builtin class
__ne__ = lambda self, other: not self == other
__gt__ = lambda self, other: not (self < other or self == other)
__le__ = lambda self, other: self < other or self == other
__ge__ = lambda self, other: not self < other
# ////////////////////////////////////////////////////////////
# Disabled list operations
# ////////////////////////////////////////////////////////////
def __mul__(self, v):
raise TypeError("Tree does not support multiplication")
def __rmul__(self, v):
raise TypeError("Tree does not support multiplication")
def __add__(self, v):
raise TypeError("Tree does not support addition")
def __radd__(self, v):
raise TypeError("Tree does not support addition")
# ////////////////////////////////////////////////////////////
# Indexing (with support for tree positions)
# ////////////////////////////////////////////////////////////
def __getitem__(self, index):
if isinstance(index, (int, slice)):
return list.__getitem__(self, index)
elif isinstance(index, (list, tuple)):
if len(index) == 0:
return self
elif len(index) == 1:
return self[index[0]]
else:
return self[index[0]][index[1:]]
else:
raise TypeError(
"%s indices must be integers, not %s"
% (type(self).__name__, type(index).__name__)
)
def __setitem__(self, index, value):
if isinstance(index, (int, slice)):
return list.__setitem__(self, index, value)
elif isinstance(index, (list, tuple)):
if len(index) == 0:
raise IndexError("The tree position () may not be " "assigned to.")
elif len(index) == 1:
self[index[0]] = value
else:
self[index[0]][index[1:]] = value
else:
raise TypeError(
"%s indices must be integers, not %s"
% (type(self).__name__, type(index).__name__)
)
def __delitem__(self, index):
if isinstance(index, (int, slice)):
return list.__delitem__(self, index)
elif isinstance(index, (list, tuple)):
if len(index) == 0:
raise IndexError("The tree position () may not be deleted.")
elif len(index) == 1:
del self[index[0]]
else:
del self[index[0]][index[1:]]
else:
raise TypeError(
"%s indices must be integers, not %s"
% (type(self).__name__, type(index).__name__)
)
# ////////////////////////////////////////////////////////////
# Basic tree operations
# ////////////////////////////////////////////////////////////
@deprecated("Use label() instead")
def _get_node(self):
"""Outdated method to access the node value; use the label() method instead."""
@deprecated("Use set_label() instead")
def _set_node(self, value):
"""Outdated method to set the node value; use the set_label() method instead."""
node = property(_get_node, _set_node)
def label(self):
"""
Return the node label of the tree.
>>> t = Tree.fromstring('(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))')
>>> t.label()
'S'
:return: the node label (typically a string)
:rtype: any
"""
return self._label
def set_label(self, label):
"""
Set the node label of the tree.
>>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))")
>>> t.set_label("T")
>>> print(t)
(T (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))
:param label: the node label (typically a string)
:type label: any
"""
self._label = label
def leaves(self):
"""
Return the leaves of the tree.
>>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))")
>>> t.leaves()
['the', 'dog', 'chased', 'the', 'cat']
:return: a list containing this tree's leaves.
The order reflects the order of the
leaves in the tree's hierarchical structure.
:rtype: list
"""
leaves = []
for child in self:
if isinstance(child, Tree):
leaves.extend(child.leaves())
else:
leaves.append(child)
return leaves
def flatten(self):
"""
Return a flat version of the tree, with all non-root non-terminals removed.
>>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))")
>>> print(t.flatten())
(S the dog chased the cat)
:return: a tree consisting of this tree's root connected directly to
its leaves, omitting all intervening non-terminal nodes.
:rtype: Tree
"""
return Tree(self.label(), self.leaves())
def height(self):
"""
Return the height of the tree.
>>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))")
>>> t.height()
5
>>> print(t[0,0])
(D the)
>>> t[0,0].height()
2
:return: The height of this tree. The height of a tree
containing no children is 1; the height of a tree
containing only leaves is 2; and the height of any other
tree is one plus the maximum of its children's
heights.
:rtype: int
"""
max_child_height = 0
for child in self:
if isinstance(child, Tree):
max_child_height = max(max_child_height, child.height())
else:
max_child_height = max(max_child_height, 1)
return 1 + max_child_height
def treepositions(self, order="preorder"):
"""
>>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))")
>>> t.treepositions() # doctest: +ELLIPSIS
[(), (0,), (0, 0), (0, 0, 0), (0, 1), (0, 1, 0), (1,), (1, 0), (1, 0, 0), ...]
>>> for pos in t.treepositions('leaves'):
... t[pos] = t[pos][::-1].upper()
>>> print(t)
(S (NP (D EHT) (N GOD)) (VP (V DESAHC) (NP (D EHT) (N TAC))))
:param order: One of: ``preorder``, ``postorder``, ``bothorder``,
``leaves``.
"""
positions = []
if order in ("preorder", "bothorder"):
positions.append(())
for i, child in enumerate(self):
if isinstance(child, Tree):
childpos = child.treepositions(order)
positions.extend((i,) + p for p in childpos)
else:
positions.append((i,))
if order in ("postorder", "bothorder"):
positions.append(())
return positions
def subtrees(self, filter=None):
"""
Generate all the subtrees of this tree, optionally restricted
to trees matching the filter function.
>>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))")
>>> for s in t.subtrees(lambda t: t.height() == 2):
... print(s)
(D the)
(N dog)
(V chased)
(D the)
(N cat)
:type filter: function
:param filter: the function to filter all local trees
"""
if not filter or filter(self):
yield self
for child in self:
if isinstance(child, Tree):
yield from child.subtrees(filter)
def productions(self):
"""
Generate the productions that correspond to the non-terminal nodes of the tree.
For each subtree of the form (P: C1 C2 ... Cn) this produces a production of the
form P -> C1 C2 ... Cn.
>>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))")
>>> t.productions() # doctest: +NORMALIZE_WHITESPACE
[S -> NP VP, NP -> D N, D -> 'the', N -> 'dog', VP -> V NP, V -> 'chased',
NP -> D N, D -> 'the', N -> 'cat']
:rtype: list(Production)
"""
if not isinstance(self._label, str):
raise TypeError(
"Productions can only be generated from trees having node labels that are strings"
)
prods = [Production(Nonterminal(self._label), _child_names(self))]
for child in self:
if isinstance(child, Tree):
prods += child.productions()
return prods
def pos(self):
"""
Return a sequence of pos-tagged words extracted from the tree.
>>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))")
>>> t.pos()
[('the', 'D'), ('dog', 'N'), ('chased', 'V'), ('the', 'D'), ('cat', 'N')]
:return: a list of tuples containing leaves and pre-terminals (part-of-speech tags).
The order reflects the order of the leaves in the tree's hierarchical structure.
:rtype: list(tuple)
"""
pos = []
for child in self:
if isinstance(child, Tree):
pos.extend(child.pos())
else:
pos.append((child, self._label))
return pos
def leaf_treeposition(self, index):
"""
:return: The tree position of the ``index``-th leaf in this
tree. I.e., if ``tp=self.leaf_treeposition(i)``, then
``self[tp]==self.leaves()[i]``.
:raise IndexError: If this tree contains fewer than ``index+1``
leaves, or if ``index<0``.
"""
if index < 0:
raise IndexError("index must be non-negative")
stack = [(self, ())]
while stack:
value, treepos = stack.pop()
if not isinstance(value, Tree):
if index == 0:
return treepos
else:
index -= 1
else:
for i in range(len(value) - 1, -1, -1):
stack.append((value[i], treepos + (i,)))
raise IndexError("index must be less than or equal to len(self)")
def treeposition_spanning_leaves(self, start, end):
"""
:return: The tree position of the lowest descendant of this
tree that dominates ``self.leaves()[start:end]``.
:raise ValueError: if ``end <= start``
"""
if end <= start:
raise ValueError("end must be greater than start")
# Find the tree positions of the start & end leaves, and
# take the longest common subsequence.
start_treepos = self.leaf_treeposition(start)
end_treepos = self.leaf_treeposition(end - 1)
# Find the first index where they mismatch:
for i in range(len(start_treepos)):
if i == len(end_treepos) or start_treepos[i] != end_treepos[i]:
return start_treepos[:i]
return start_treepos
# ////////////////////////////////////////////////////////////
# Transforms
# ////////////////////////////////////////////////////////////
def chomsky_normal_form(
self,
factor="right",
horzMarkov=None,
vertMarkov=0,
childChar="|",
parentChar="^",
):
"""
This method can modify a tree in three ways:
1. Convert a tree into its Chomsky Normal Form (CNF)
equivalent -- Every subtree has either two non-terminals
or one terminal as its children. This process requires
the creation of more"artificial" non-terminal nodes.
2. Markov (vertical) smoothing of children in new artificial
nodes
3. Horizontal (parent) annotation of nodes
:param factor: Right or left factoring method (default = "right")
:type factor: str = [left|right]
:param horzMarkov: Markov order for sibling smoothing in artificial nodes (None (default) = include all siblings)
:type horzMarkov: int | None
:param vertMarkov: Markov order for parent smoothing (0 (default) = no vertical annotation)
:type vertMarkov: int | None
:param childChar: A string used in construction of the artificial nodes, separating the head of the
original subtree from the child nodes that have yet to be expanded (default = "|")
:type childChar: str
:param parentChar: A string used to separate the node representation from its vertical annotation
:type parentChar: str
"""
from nltk.tree.transforms import chomsky_normal_form
chomsky_normal_form(self, factor, horzMarkov, vertMarkov, childChar, parentChar)
def un_chomsky_normal_form(
self, expandUnary=True, childChar="|", parentChar="^", unaryChar="+"
):
"""
This method modifies the tree in three ways:
1. Transforms a tree in Chomsky Normal Form back to its
original structure (branching greater than two)
2. Removes any parent annotation (if it exists)
3. (optional) expands unary subtrees (if previously
collapsed with collapseUnary(...) )
:param expandUnary: Flag to expand unary or not (default = True)
:type expandUnary: bool
:param childChar: A string separating the head node from its children in an artificial node (default = "|")
:type childChar: str
:param parentChar: A string separating the node label from its parent annotation (default = "^")
:type parentChar: str
:param unaryChar: A string joining two non-terminals in a unary production (default = "+")
:type unaryChar: str
"""
from nltk.tree.transforms import un_chomsky_normal_form
un_chomsky_normal_form(self, expandUnary, childChar, parentChar, unaryChar)
def collapse_unary(self, collapsePOS=False, collapseRoot=False, joinChar="+"):
"""
Collapse subtrees with a single child (ie. unary productions)
into a new non-terminal (Tree node) joined by 'joinChar'.
This is useful when working with algorithms that do not allow
unary productions, and completely removing the unary productions
would require loss of useful information. The Tree is modified
directly (since it is passed by reference) and no value is returned.
:param collapsePOS: 'False' (default) will not collapse the parent of leaf nodes (ie.
Part-of-Speech tags) since they are always unary productions
:type collapsePOS: bool
:param collapseRoot: 'False' (default) will not modify the root production
if it is unary. For the Penn WSJ treebank corpus, this corresponds
to the TOP -> productions.
:type collapseRoot: bool
:param joinChar: A string used to connect collapsed node values (default = "+")
:type joinChar: str
"""
from nltk.tree.transforms import collapse_unary
collapse_unary(self, collapsePOS, collapseRoot, joinChar)
# ////////////////////////////////////////////////////////////
# Convert, copy
# ////////////////////////////////////////////////////////////
@classmethod
def convert(cls, tree):
"""
Convert a tree between different subtypes of Tree. ``cls`` determines
which class will be used to encode the new tree.
:type tree: Tree
:param tree: The tree that should be converted.
:return: The new Tree.
"""
if isinstance(tree, Tree):
children = [cls.convert(child) for child in tree]
return cls(tree._label, children)
else:
return tree
def __copy__(self):
return self.copy()
def __deepcopy__(self, memo):
return self.copy(deep=True)
def copy(self, deep=False):
if not deep:
return type(self)(self._label, self)
else:
return type(self).convert(self)
def _frozen_class(self):
from nltk.tree.immutable import ImmutableTree
return ImmutableTree
def freeze(self, leaf_freezer=None):
frozen_class = self._frozen_class()
if leaf_freezer is None:
newcopy = frozen_class.convert(self)
else:
newcopy = self.copy(deep=True)
for pos in newcopy.treepositions("leaves"):
newcopy[pos] = leaf_freezer(newcopy[pos])
newcopy = frozen_class.convert(newcopy)
hash(newcopy) # Make sure the leaves are hashable.
return newcopy
# ////////////////////////////////////////////////////////////
# Parsing
# ////////////////////////////////////////////////////////////
@classmethod
def fromstring(
cls,
s,
brackets="()",
read_node=None,
read_leaf=None,
node_pattern=None,
leaf_pattern=None,
remove_empty_top_bracketing=False,
):
"""
Read a bracketed tree string and return the resulting tree.
Trees are represented as nested brackettings, such as::
(S (NP (NNP John)) (VP (V runs)))
:type s: str
:param s: The string to read
:type brackets: str (length=2)
:param brackets: The bracket characters used to mark the
beginning and end of trees and subtrees.
:type read_node: function
:type read_leaf: function
:param read_node, read_leaf: If specified, these functions
are applied to the substrings of ``s`` corresponding to
nodes and leaves (respectively) to obtain the values for
those nodes and leaves. They should have the following
signature:
read_node(str) -> value
For example, these functions could be used to process nodes
and leaves whose values should be some type other than
string (such as ``FeatStruct``).
Note that by default, node strings and leaf strings are
delimited by whitespace and brackets; to override this
default, use the ``node_pattern`` and ``leaf_pattern``
arguments.
:type node_pattern: str
:type leaf_pattern: str
:param node_pattern, leaf_pattern: Regular expression patterns
used to find node and leaf substrings in ``s``. By
default, both nodes patterns are defined to match any
sequence of non-whitespace non-bracket characters.
:type remove_empty_top_bracketing: bool
:param remove_empty_top_bracketing: If the resulting tree has
an empty node label, and is length one, then return its
single child instead. This is useful for treebank trees,
which sometimes contain an extra level of bracketing.
:return: A tree corresponding to the string representation ``s``.
If this class method is called using a subclass of Tree,
then it will return a tree of that type.
:rtype: Tree
"""
if not isinstance(brackets, str) or len(brackets) != 2:
raise TypeError("brackets must be a length-2 string")
if re.search(r"\s", brackets):
raise TypeError("whitespace brackets not allowed")
# Construct a regexp that will tokenize the string.
open_b, close_b = brackets
open_pattern, close_pattern = (re.escape(open_b), re.escape(close_b))
if node_pattern is None:
node_pattern = rf"[^\s{open_pattern}{close_pattern}]+"
if leaf_pattern is None:
leaf_pattern = rf"[^\s{open_pattern}{close_pattern}]+"
token_re = re.compile(
r"%s\s*(%s)?|%s|(%s)"
% (open_pattern, node_pattern, close_pattern, leaf_pattern)
)
# Walk through each token, updating a stack of trees.
stack = [(None, [])] # list of (node, children) tuples
for match in token_re.finditer(s):
token = match.group()
# Beginning of a tree/subtree
if token[0] == open_b:
if len(stack) == 1 and len(stack[0][1]) > 0:
cls._parse_error(s, match, "end-of-string")
label = token[1:].lstrip()
if read_node is not None:
label = read_node(label)
stack.append((label, []))
# End of a tree/subtree
elif token == close_b:
if len(stack) == 1:
if len(stack[0][1]) == 0:
cls._parse_error(s, match, open_b)
else:
cls._parse_error(s, match, "end-of-string")
label, children = stack.pop()
stack[-1][1].append(cls(label, children))
# Leaf node
else:
if len(stack) == 1:
cls._parse_error(s, match, open_b)
if read_leaf is not None:
token = read_leaf(token)
stack[-1][1].append(token)
# check that we got exactly one complete tree.
if len(stack) > 1:
cls._parse_error(s, "end-of-string", close_b)
elif len(stack[0][1]) == 0:
cls._parse_error(s, "end-of-string", open_b)
else:
assert stack[0][0] is None
assert len(stack[0][1]) == 1
tree = stack[0][1][0]
# If the tree has an extra level with node='', then get rid of
# it. E.g.: "((S (NP ...) (VP ...)))"
if remove_empty_top_bracketing and tree._label == "" and len(tree) == 1:
tree = tree[0]
# return the tree.
return tree
@classmethod
def _parse_error(cls, s, match, expecting):
"""
Display a friendly error message when parsing a tree string fails.
:param s: The string we're parsing.
:param match: regexp match of the problem token.
:param expecting: what we expected to see instead.
"""
# Construct a basic error message
if match == "end-of-string":
pos, token = len(s), "end-of-string"
else:
pos, token = match.start(), match.group()
msg = "%s.read(): expected %r but got %r\n%sat index %d." % (
cls.__name__,
expecting,
token,
" " * 12,
pos,
)
# Add a display showing the error token itsels:
s = s.replace("\n", " ").replace("\t", " ")
offset = pos
if len(s) > pos + 10:
s = s[: pos + 10] + "..."
if pos > 10:
s = "..." + s[pos - 10 :]
offset = 13
msg += '\n{}"{}"\n{}^'.format(" " * 16, s, " " * (17 + offset))
raise ValueError(msg)
@classmethod
def fromlist(cls, l):
"""
:type l: list
:param l: a tree represented as nested lists
:return: A tree corresponding to the list representation ``l``.
:rtype: Tree
Convert nested lists to a NLTK Tree
"""
if type(l) == list and len(l) > 0:
label = repr(l[0])
if len(l) > 1:
return Tree(label, [cls.fromlist(child) for child in l[1:]])
else:
return label
# ////////////////////////////////////////////////////////////
# Visualization & String Representation
# ////////////////////////////////////////////////////////////
def draw(self):
"""
Open a new window containing a graphical diagram of this tree.
"""
from nltk.draw.tree import draw_trees
draw_trees(self)
def pretty_print(self, sentence=None, highlight=(), stream=None, **kwargs):
"""
Pretty-print this tree as ASCII or Unicode art.
For explanation of the arguments, see the documentation for
`nltk.tree.prettyprinter.TreePrettyPrinter`.
"""
from nltk.tree.prettyprinter import TreePrettyPrinter
print(TreePrettyPrinter(self, sentence, highlight).text(**kwargs), file=stream)
def __repr__(self):
childstr = ", ".join(repr(c) for c in self)
return "{}({}, [{}])".format(
type(self).__name__,
repr(self._label),
childstr,
)
def _repr_svg_(self):
from svgling import draw_tree
return draw_tree(self)._repr_svg_()
def __str__(self):
return self.pformat()
def pprint(self, **kwargs):
"""
Print a string representation of this Tree to 'stream'
"""
if "stream" in kwargs:
stream = kwargs["stream"]
del kwargs["stream"]
else:
stream = None
print(self.pformat(**kwargs), file=stream)
def pformat(self, margin=70, indent=0, nodesep="", parens="()", quotes=False):
"""
:return: A pretty-printed string representation of this tree.
:rtype: str
:param margin: The right margin at which to do line-wrapping.
:type margin: int
:param indent: The indentation level at which printing
begins. This number is used to decide how far to indent
subsequent lines.
:type indent: int
:param nodesep: A string that is used to separate the node
from the children. E.g., the default value ``':'`` gives
trees like ``(S: (NP: I) (VP: (V: saw) (NP: it)))``.
"""
# Try writing it on one line.
s = self._pformat_flat(nodesep, parens, quotes)
if len(s) + indent < margin:
return s
# If it doesn't fit on one line, then write it on multi-lines.
if isinstance(self._label, str):
s = f"{parens[0]}{self._label}{nodesep}"
else:
s = f"{parens[0]}{repr(self._label)}{nodesep}"
for child in self:
if isinstance(child, Tree):
s += (
"\n"
+ " " * (indent + 2)
+ child.pformat(margin, indent + 2, nodesep, parens, quotes)
)
elif isinstance(child, tuple):
s += "\n" + " " * (indent + 2) + "/".join(child)
elif isinstance(child, str) and not quotes:
s += "\n" + " " * (indent + 2) + "%s" % child
else:
s += "\n" + " " * (indent + 2) + repr(child)
return s + parens[1]
def pformat_latex_qtree(self):
r"""
Returns a representation of the tree compatible with the
LaTeX qtree package. This consists of the string ``\Tree``
followed by the tree represented in bracketed notation.
For example, the following result was generated from a parse tree of
the sentence ``The announcement astounded us``::
\Tree [.I'' [.N'' [.D The ] [.N' [.N announcement ] ] ]
[.I' [.V'' [.V' [.V astounded ] [.N'' [.N' [.N us ] ] ] ] ] ] ]
See https://www.ling.upenn.edu/advice/latex.html for the LaTeX
style file for the qtree package.
:return: A latex qtree representation of this tree.
:rtype: str
"""
reserved_chars = re.compile(r"([#\$%&~_\{\}])")
pformat = self.pformat(indent=6, nodesep="", parens=("[.", " ]"))
return r"\Tree " + re.sub(reserved_chars, r"\\\1", pformat)
def _pformat_flat(self, nodesep, parens, quotes):
childstrs = []
for child in self:
if isinstance(child, Tree):
childstrs.append(child._pformat_flat(nodesep, parens, quotes))
elif isinstance(child, tuple):
childstrs.append("/".join(child))
elif isinstance(child, str) and not quotes:
childstrs.append("%s" % child)
else:
childstrs.append(repr(child))
if isinstance(self._label, str):
return "{}{}{} {}{}".format(
parens[0],
self._label,
nodesep,
" ".join(childstrs),
parens[1],
)
else:
return "{}{}{} {}{}".format(
parens[0],
repr(self._label),
nodesep,
" ".join(childstrs),
parens[1],
)
def _child_names(tree):
names = []
for child in tree:
if isinstance(child, Tree):
names.append(Nonterminal(child._label))
else:
names.append(child)
return names
######################################################################
## Demonstration
######################################################################
def demo():
"""
A demonstration showing how Trees and Trees can be
used. This demonstration creates a Tree, and loads a
Tree from the Treebank corpus,
and shows the results of calling several of their methods.
"""
from nltk import ProbabilisticTree, Tree
# Demonstrate tree parsing.
s = "(S (NP (DT the) (NN cat)) (VP (VBD ate) (NP (DT a) (NN cookie))))"
t = Tree.fromstring(s)
print("Convert bracketed string into tree:")
print(t)
print(t.__repr__())
print("Display tree properties:")
print(t.label()) # tree's constituent type
print(t[0]) # tree's first child
print(t[1]) # tree's second child
print(t.height())
print(t.leaves())
print(t[1])
print(t[1, 1])
print(t[1, 1, 0])
# Demonstrate tree modification.
the_cat = t[0]
the_cat.insert(1, Tree.fromstring("(JJ big)"))
print("Tree modification:")
print(t)
t[1, 1, 1] = Tree.fromstring("(NN cake)")
print(t)
print()
# Tree transforms
print("Collapse unary:")
t.collapse_unary()
print(t)
print("Chomsky normal form:")
t.chomsky_normal_form()
print(t)
print()
# Demonstrate probabilistic trees.
pt = ProbabilisticTree("x", ["y", "z"], prob=0.5)
print("Probabilistic Tree:")
print(pt)
print()
# Demonstrate parsing of treebank output format.
t = Tree.fromstring(t.pformat())
print("Convert tree to bracketed string and back again:")
print(t)
print()
# Demonstrate LaTeX output
print("LaTeX output:")
print(t.pformat_latex_qtree())
print()
# Demonstrate Productions
print("Production output:")
print(t.productions())
print()
# Demonstrate tree nodes containing objects other than strings
t.set_label(("test", 3))
print(t)
__all__ = [
"Tree",
]