updates
This commit is contained in:
346
Backend/venv/lib/python3.12/site-packages/nltk/translate/ibm3.py
Normal file
346
Backend/venv/lib/python3.12/site-packages/nltk/translate/ibm3.py
Normal file
@@ -0,0 +1,346 @@
|
||||
# Natural Language Toolkit: IBM Model 3
|
||||
#
|
||||
# Copyright (C) 2001-2013 NLTK Project
|
||||
# Authors: Chin Yee Lee, Hengfeng Li, Ruxin Hou, Calvin Tanujaya Lim
|
||||
# URL: <https://www.nltk.org/>
|
||||
# For license information, see LICENSE.TXT
|
||||
|
||||
"""
|
||||
Translation model that considers how a word can be aligned to
|
||||
multiple words in another language.
|
||||
|
||||
IBM Model 3 improves on Model 2 by directly modeling the phenomenon
|
||||
where a word in one language may be translated into zero or more words
|
||||
in another. This is expressed by the fertility probability,
|
||||
n(phi | source word).
|
||||
|
||||
If a source word translates into more than one word, it is possible to
|
||||
generate sentences that have the same alignment in multiple ways. This
|
||||
is modeled by a distortion step. The distortion probability, d(j|i,l,m),
|
||||
predicts a target word position, given its aligned source word's
|
||||
position. The distortion probability replaces the alignment probability
|
||||
of Model 2.
|
||||
|
||||
The fertility probability is not applicable for NULL. Target words that
|
||||
align to NULL are assumed to be distributed uniformly in the target
|
||||
sentence. The existence of these words is modeled by p1, the probability
|
||||
that a target word produced by a real source word requires another
|
||||
target word that is produced by NULL.
|
||||
|
||||
The EM algorithm used in Model 3 is:
|
||||
|
||||
:E step: In the training data, collect counts, weighted by prior
|
||||
probabilities.
|
||||
|
||||
- (a) count how many times a source language word is translated
|
||||
into a target language word
|
||||
- (b) count how many times a particular position in the target
|
||||
sentence is aligned to a particular position in the source
|
||||
sentence
|
||||
- (c) count how many times a source word is aligned to phi number
|
||||
of target words
|
||||
- (d) count how many times NULL is aligned to a target word
|
||||
|
||||
:M step: Estimate new probabilities based on the counts from the E step
|
||||
|
||||
Because there are too many possible alignments, only the most probable
|
||||
ones are considered. First, the best alignment is determined using prior
|
||||
probabilities. Then, a hill climbing approach is used to find other good
|
||||
candidates.
|
||||
|
||||
Notations
|
||||
---------
|
||||
|
||||
:i: Position in the source sentence
|
||||
Valid values are 0 (for NULL), 1, 2, ..., length of source sentence
|
||||
:j: Position in the target sentence
|
||||
Valid values are 1, 2, ..., length of target sentence
|
||||
:l: Number of words in the source sentence, excluding NULL
|
||||
:m: Number of words in the target sentence
|
||||
:s: A word in the source language
|
||||
:t: A word in the target language
|
||||
:phi: Fertility, the number of target words produced by a source word
|
||||
:p1: Probability that a target word produced by a source word is
|
||||
accompanied by another target word that is aligned to NULL
|
||||
:p0: 1 - p1
|
||||
|
||||
References
|
||||
----------
|
||||
|
||||
Philipp Koehn. 2010. Statistical Machine Translation.
|
||||
Cambridge University Press, New York.
|
||||
|
||||
Peter E Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and
|
||||
Robert L. Mercer. 1993. The Mathematics of Statistical Machine
|
||||
Translation: Parameter Estimation. Computational Linguistics, 19 (2),
|
||||
263-311.
|
||||
"""
|
||||
|
||||
import warnings
|
||||
from collections import defaultdict
|
||||
from math import factorial
|
||||
|
||||
from nltk.translate import AlignedSent, Alignment, IBMModel, IBMModel2
|
||||
from nltk.translate.ibm_model import Counts
|
||||
|
||||
|
||||
class IBMModel3(IBMModel):
|
||||
"""
|
||||
Translation model that considers how a word can be aligned to
|
||||
multiple words in another language
|
||||
|
||||
>>> bitext = []
|
||||
>>> bitext.append(AlignedSent(['klein', 'ist', 'das', 'haus'], ['the', 'house', 'is', 'small']))
|
||||
>>> bitext.append(AlignedSent(['das', 'haus', 'war', 'ja', 'groß'], ['the', 'house', 'was', 'big']))
|
||||
>>> bitext.append(AlignedSent(['das', 'buch', 'ist', 'ja', 'klein'], ['the', 'book', 'is', 'small']))
|
||||
>>> bitext.append(AlignedSent(['ein', 'haus', 'ist', 'klein'], ['a', 'house', 'is', 'small']))
|
||||
>>> bitext.append(AlignedSent(['das', 'haus'], ['the', 'house']))
|
||||
>>> bitext.append(AlignedSent(['das', 'buch'], ['the', 'book']))
|
||||
>>> bitext.append(AlignedSent(['ein', 'buch'], ['a', 'book']))
|
||||
>>> bitext.append(AlignedSent(['ich', 'fasse', 'das', 'buch', 'zusammen'], ['i', 'summarize', 'the', 'book']))
|
||||
>>> bitext.append(AlignedSent(['fasse', 'zusammen'], ['summarize']))
|
||||
|
||||
>>> ibm3 = IBMModel3(bitext, 5)
|
||||
|
||||
>>> print(round(ibm3.translation_table['buch']['book'], 3))
|
||||
1.0
|
||||
>>> print(round(ibm3.translation_table['das']['book'], 3))
|
||||
0.0
|
||||
>>> print(round(ibm3.translation_table['ja'][None], 3))
|
||||
1.0
|
||||
|
||||
>>> print(round(ibm3.distortion_table[1][1][2][2], 3))
|
||||
1.0
|
||||
>>> print(round(ibm3.distortion_table[1][2][2][2], 3))
|
||||
0.0
|
||||
>>> print(round(ibm3.distortion_table[2][2][4][5], 3))
|
||||
0.75
|
||||
|
||||
>>> print(round(ibm3.fertility_table[2]['summarize'], 3))
|
||||
1.0
|
||||
>>> print(round(ibm3.fertility_table[1]['book'], 3))
|
||||
1.0
|
||||
|
||||
>>> print(round(ibm3.p1, 3))
|
||||
0.054
|
||||
|
||||
>>> test_sentence = bitext[2]
|
||||
>>> test_sentence.words
|
||||
['das', 'buch', 'ist', 'ja', 'klein']
|
||||
>>> test_sentence.mots
|
||||
['the', 'book', 'is', 'small']
|
||||
>>> test_sentence.alignment
|
||||
Alignment([(0, 0), (1, 1), (2, 2), (3, None), (4, 3)])
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, sentence_aligned_corpus, iterations, probability_tables=None):
|
||||
"""
|
||||
Train on ``sentence_aligned_corpus`` and create a lexical
|
||||
translation model, a distortion model, a fertility model, and a
|
||||
model for generating NULL-aligned words.
|
||||
|
||||
Translation direction is from ``AlignedSent.mots`` to
|
||||
``AlignedSent.words``.
|
||||
|
||||
:param sentence_aligned_corpus: Sentence-aligned parallel corpus
|
||||
:type sentence_aligned_corpus: list(AlignedSent)
|
||||
|
||||
:param iterations: Number of iterations to run training algorithm
|
||||
:type iterations: int
|
||||
|
||||
:param probability_tables: Optional. Use this to pass in custom
|
||||
probability values. If not specified, probabilities will be
|
||||
set to a uniform distribution, or some other sensible value.
|
||||
If specified, all the following entries must be present:
|
||||
``translation_table``, ``alignment_table``,
|
||||
``fertility_table``, ``p1``, ``distortion_table``.
|
||||
See ``IBMModel`` for the type and purpose of these tables.
|
||||
:type probability_tables: dict[str]: object
|
||||
"""
|
||||
super().__init__(sentence_aligned_corpus)
|
||||
self.reset_probabilities()
|
||||
|
||||
if probability_tables is None:
|
||||
# Get translation and alignment probabilities from IBM Model 2
|
||||
ibm2 = IBMModel2(sentence_aligned_corpus, iterations)
|
||||
self.translation_table = ibm2.translation_table
|
||||
self.alignment_table = ibm2.alignment_table
|
||||
self.set_uniform_probabilities(sentence_aligned_corpus)
|
||||
else:
|
||||
# Set user-defined probabilities
|
||||
self.translation_table = probability_tables["translation_table"]
|
||||
self.alignment_table = probability_tables["alignment_table"]
|
||||
self.fertility_table = probability_tables["fertility_table"]
|
||||
self.p1 = probability_tables["p1"]
|
||||
self.distortion_table = probability_tables["distortion_table"]
|
||||
|
||||
for n in range(0, iterations):
|
||||
self.train(sentence_aligned_corpus)
|
||||
|
||||
def reset_probabilities(self):
|
||||
super().reset_probabilities()
|
||||
self.distortion_table = defaultdict(
|
||||
lambda: defaultdict(
|
||||
lambda: defaultdict(lambda: defaultdict(lambda: self.MIN_PROB))
|
||||
)
|
||||
)
|
||||
"""
|
||||
dict[int][int][int][int]: float. Probability(j | i,l,m).
|
||||
Values accessed as ``distortion_table[j][i][l][m]``.
|
||||
"""
|
||||
|
||||
def set_uniform_probabilities(self, sentence_aligned_corpus):
|
||||
# d(j | i,l,m) = 1 / m for all i, j, l, m
|
||||
l_m_combinations = set()
|
||||
for aligned_sentence in sentence_aligned_corpus:
|
||||
l = len(aligned_sentence.mots)
|
||||
m = len(aligned_sentence.words)
|
||||
if (l, m) not in l_m_combinations:
|
||||
l_m_combinations.add((l, m))
|
||||
initial_prob = 1 / m
|
||||
if initial_prob < IBMModel.MIN_PROB:
|
||||
warnings.warn(
|
||||
"A target sentence is too long ("
|
||||
+ str(m)
|
||||
+ " words). Results may be less accurate."
|
||||
)
|
||||
for j in range(1, m + 1):
|
||||
for i in range(0, l + 1):
|
||||
self.distortion_table[j][i][l][m] = initial_prob
|
||||
|
||||
# simple initialization, taken from GIZA++
|
||||
self.fertility_table[0] = defaultdict(lambda: 0.2)
|
||||
self.fertility_table[1] = defaultdict(lambda: 0.65)
|
||||
self.fertility_table[2] = defaultdict(lambda: 0.1)
|
||||
self.fertility_table[3] = defaultdict(lambda: 0.04)
|
||||
MAX_FERTILITY = 10
|
||||
initial_fert_prob = 0.01 / (MAX_FERTILITY - 4)
|
||||
for phi in range(4, MAX_FERTILITY):
|
||||
self.fertility_table[phi] = defaultdict(lambda: initial_fert_prob)
|
||||
|
||||
self.p1 = 0.5
|
||||
|
||||
def train(self, parallel_corpus):
|
||||
counts = Model3Counts()
|
||||
for aligned_sentence in parallel_corpus:
|
||||
l = len(aligned_sentence.mots)
|
||||
m = len(aligned_sentence.words)
|
||||
|
||||
# Sample the alignment space
|
||||
sampled_alignments, best_alignment = self.sample(aligned_sentence)
|
||||
# Record the most probable alignment
|
||||
aligned_sentence.alignment = Alignment(
|
||||
best_alignment.zero_indexed_alignment()
|
||||
)
|
||||
|
||||
# E step (a): Compute normalization factors to weigh counts
|
||||
total_count = self.prob_of_alignments(sampled_alignments)
|
||||
|
||||
# E step (b): Collect counts
|
||||
for alignment_info in sampled_alignments:
|
||||
count = self.prob_t_a_given_s(alignment_info)
|
||||
normalized_count = count / total_count
|
||||
|
||||
for j in range(1, m + 1):
|
||||
counts.update_lexical_translation(
|
||||
normalized_count, alignment_info, j
|
||||
)
|
||||
counts.update_distortion(normalized_count, alignment_info, j, l, m)
|
||||
|
||||
counts.update_null_generation(normalized_count, alignment_info)
|
||||
counts.update_fertility(normalized_count, alignment_info)
|
||||
|
||||
# M step: Update probabilities with maximum likelihood estimates
|
||||
# If any probability is less than MIN_PROB, clamp it to MIN_PROB
|
||||
existing_alignment_table = self.alignment_table
|
||||
self.reset_probabilities()
|
||||
self.alignment_table = existing_alignment_table # don't retrain
|
||||
|
||||
self.maximize_lexical_translation_probabilities(counts)
|
||||
self.maximize_distortion_probabilities(counts)
|
||||
self.maximize_fertility_probabilities(counts)
|
||||
self.maximize_null_generation_probabilities(counts)
|
||||
|
||||
def maximize_distortion_probabilities(self, counts):
|
||||
MIN_PROB = IBMModel.MIN_PROB
|
||||
for j, i_s in counts.distortion.items():
|
||||
for i, src_sentence_lengths in i_s.items():
|
||||
for l, trg_sentence_lengths in src_sentence_lengths.items():
|
||||
for m in trg_sentence_lengths:
|
||||
estimate = (
|
||||
counts.distortion[j][i][l][m]
|
||||
/ counts.distortion_for_any_j[i][l][m]
|
||||
)
|
||||
self.distortion_table[j][i][l][m] = max(estimate, MIN_PROB)
|
||||
|
||||
def prob_t_a_given_s(self, alignment_info):
|
||||
"""
|
||||
Probability of target sentence and an alignment given the
|
||||
source sentence
|
||||
"""
|
||||
src_sentence = alignment_info.src_sentence
|
||||
trg_sentence = alignment_info.trg_sentence
|
||||
l = len(src_sentence) - 1 # exclude NULL
|
||||
m = len(trg_sentence) - 1
|
||||
p1 = self.p1
|
||||
p0 = 1 - p1
|
||||
|
||||
probability = 1.0
|
||||
MIN_PROB = IBMModel.MIN_PROB
|
||||
|
||||
# Combine NULL insertion probability
|
||||
null_fertility = alignment_info.fertility_of_i(0)
|
||||
probability *= pow(p1, null_fertility) * pow(p0, m - 2 * null_fertility)
|
||||
if probability < MIN_PROB:
|
||||
return MIN_PROB
|
||||
|
||||
# Compute combination (m - null_fertility) choose null_fertility
|
||||
for i in range(1, null_fertility + 1):
|
||||
probability *= (m - null_fertility - i + 1) / i
|
||||
if probability < MIN_PROB:
|
||||
return MIN_PROB
|
||||
|
||||
# Combine fertility probabilities
|
||||
for i in range(1, l + 1):
|
||||
fertility = alignment_info.fertility_of_i(i)
|
||||
probability *= (
|
||||
factorial(fertility) * self.fertility_table[fertility][src_sentence[i]]
|
||||
)
|
||||
if probability < MIN_PROB:
|
||||
return MIN_PROB
|
||||
|
||||
# Combine lexical and distortion probabilities
|
||||
for j in range(1, m + 1):
|
||||
t = trg_sentence[j]
|
||||
i = alignment_info.alignment[j]
|
||||
s = src_sentence[i]
|
||||
|
||||
probability *= (
|
||||
self.translation_table[t][s] * self.distortion_table[j][i][l][m]
|
||||
)
|
||||
if probability < MIN_PROB:
|
||||
return MIN_PROB
|
||||
|
||||
return probability
|
||||
|
||||
|
||||
class Model3Counts(Counts):
|
||||
"""
|
||||
Data object to store counts of various parameters during training.
|
||||
Includes counts for distortion.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.distortion = defaultdict(
|
||||
lambda: defaultdict(lambda: defaultdict(lambda: defaultdict(float)))
|
||||
)
|
||||
self.distortion_for_any_j = defaultdict(
|
||||
lambda: defaultdict(lambda: defaultdict(float))
|
||||
)
|
||||
|
||||
def update_distortion(self, count, alignment_info, j, l, m):
|
||||
i = alignment_info.alignment[j]
|
||||
self.distortion[j][i][l][m] += count
|
||||
self.distortion_for_any_j[i][l][m] += count
|
||||
Reference in New Issue
Block a user