updates
This commit is contained in:
267
Backend/venv/lib/python3.12/site-packages/nltk/tbl/feature.py
Normal file
267
Backend/venv/lib/python3.12/site-packages/nltk/tbl/feature.py
Normal file
@@ -0,0 +1,267 @@
|
||||
# Natural Language Toolkit: Transformation-based learning
|
||||
#
|
||||
# Copyright (C) 2001-2025 NLTK Project
|
||||
# Author: Marcus Uneson <marcus.uneson@gmail.com>
|
||||
# based on previous (nltk2) version by
|
||||
# Christopher Maloof, Edward Loper, Steven Bird
|
||||
# URL: <https://www.nltk.org/>
|
||||
# For license information, see LICENSE.TXT
|
||||
|
||||
from abc import ABCMeta, abstractmethod
|
||||
|
||||
|
||||
class Feature(metaclass=ABCMeta):
|
||||
"""
|
||||
An abstract base class for Features. A Feature is a combination of
|
||||
a specific property-computing method and a list of relative positions
|
||||
to apply that method to.
|
||||
|
||||
The property-computing method, M{extract_property(tokens, index)},
|
||||
must be implemented by every subclass. It extracts or computes a specific
|
||||
property for the token at the current index. Typical extract_property()
|
||||
methods return features such as the token text or tag; but more involved
|
||||
methods may consider the entire sequence M{tokens} and
|
||||
for instance compute the length of the sentence the token belongs to.
|
||||
|
||||
In addition, the subclass may have a PROPERTY_NAME, which is how
|
||||
it will be printed (in Rules and Templates, etc). If not given, defaults
|
||||
to the classname.
|
||||
|
||||
"""
|
||||
|
||||
json_tag = "nltk.tbl.Feature"
|
||||
PROPERTY_NAME = None
|
||||
|
||||
def __init__(self, positions, end=None):
|
||||
"""
|
||||
Construct a Feature which may apply at C{positions}.
|
||||
|
||||
>>> # For instance, importing some concrete subclasses (Feature is abstract)
|
||||
>>> from nltk.tag.brill import Word, Pos
|
||||
|
||||
>>> # Feature Word, applying at one of [-2, -1]
|
||||
>>> Word([-2,-1])
|
||||
Word([-2, -1])
|
||||
|
||||
>>> # Positions need not be contiguous
|
||||
>>> Word([-2,-1, 1])
|
||||
Word([-2, -1, 1])
|
||||
|
||||
>>> # Contiguous ranges can alternatively be specified giving the
|
||||
>>> # two endpoints (inclusive)
|
||||
>>> Pos(-3, -1)
|
||||
Pos([-3, -2, -1])
|
||||
|
||||
>>> # In two-arg form, start <= end is enforced
|
||||
>>> Pos(2, 1)
|
||||
Traceback (most recent call last):
|
||||
File "<stdin>", line 1, in <module>
|
||||
File "nltk/tbl/template.py", line 306, in __init__
|
||||
raise TypeError
|
||||
ValueError: illegal interval specification: (start=2, end=1)
|
||||
|
||||
:type positions: list of int
|
||||
:param positions: the positions at which this features should apply
|
||||
:raises ValueError: illegal position specifications
|
||||
|
||||
An alternative calling convention, for contiguous positions only,
|
||||
is Feature(start, end):
|
||||
|
||||
:type start: int
|
||||
:param start: start of range where this feature should apply
|
||||
:type end: int
|
||||
:param end: end of range (NOTE: inclusive!) where this feature should apply
|
||||
"""
|
||||
self.positions = None # to avoid warnings
|
||||
if end is None:
|
||||
self.positions = tuple(sorted({int(i) for i in positions}))
|
||||
else: # positions was actually not a list, but only the start index
|
||||
try:
|
||||
if positions > end:
|
||||
raise TypeError
|
||||
self.positions = tuple(range(positions, end + 1))
|
||||
except TypeError as e:
|
||||
# let any kind of erroneous spec raise ValueError
|
||||
raise ValueError(
|
||||
"illegal interval specification: (start={}, end={})".format(
|
||||
positions, end
|
||||
)
|
||||
) from e
|
||||
|
||||
# set property name given in subclass, or otherwise name of subclass
|
||||
self.PROPERTY_NAME = self.__class__.PROPERTY_NAME or self.__class__.__name__
|
||||
|
||||
def encode_json_obj(self):
|
||||
return self.positions
|
||||
|
||||
@classmethod
|
||||
def decode_json_obj(cls, obj):
|
||||
positions = obj
|
||||
return cls(positions)
|
||||
|
||||
def __repr__(self):
|
||||
return f"{self.__class__.__name__}({list(self.positions)!r})"
|
||||
|
||||
@classmethod
|
||||
def expand(cls, starts, winlens, excludezero=False):
|
||||
"""
|
||||
Return a list of features, one for each start point in starts
|
||||
and for each window length in winlen. If excludezero is True,
|
||||
no Features containing 0 in its positions will be generated
|
||||
(many tbl trainers have a special representation for the
|
||||
target feature at [0])
|
||||
|
||||
For instance, importing a concrete subclass (Feature is abstract)
|
||||
|
||||
>>> from nltk.tag.brill import Word
|
||||
|
||||
First argument gives the possible start positions, second the
|
||||
possible window lengths
|
||||
|
||||
>>> Word.expand([-3,-2,-1], [1])
|
||||
[Word([-3]), Word([-2]), Word([-1])]
|
||||
|
||||
>>> Word.expand([-2,-1], [1])
|
||||
[Word([-2]), Word([-1])]
|
||||
|
||||
>>> Word.expand([-3,-2,-1], [1,2])
|
||||
[Word([-3]), Word([-2]), Word([-1]), Word([-3, -2]), Word([-2, -1])]
|
||||
|
||||
>>> Word.expand([-2,-1], [1])
|
||||
[Word([-2]), Word([-1])]
|
||||
|
||||
A third optional argument excludes all Features whose positions contain zero
|
||||
|
||||
>>> Word.expand([-2,-1,0], [1,2], excludezero=False)
|
||||
[Word([-2]), Word([-1]), Word([0]), Word([-2, -1]), Word([-1, 0])]
|
||||
|
||||
>>> Word.expand([-2,-1,0], [1,2], excludezero=True)
|
||||
[Word([-2]), Word([-1]), Word([-2, -1])]
|
||||
|
||||
All window lengths must be positive
|
||||
|
||||
>>> Word.expand([-2,-1], [0])
|
||||
Traceback (most recent call last):
|
||||
File "<stdin>", line 1, in <module>
|
||||
File "nltk/tag/tbl/template.py", line 371, in expand
|
||||
:param starts: where to start looking for Feature
|
||||
ValueError: non-positive window length in [0]
|
||||
|
||||
:param starts: where to start looking for Feature
|
||||
:type starts: list of ints
|
||||
:param winlens: window lengths where to look for Feature
|
||||
:type starts: list of ints
|
||||
:param excludezero: do not output any Feature with 0 in any of its positions.
|
||||
:type excludezero: bool
|
||||
:returns: list of Features
|
||||
:raises ValueError: for non-positive window lengths
|
||||
"""
|
||||
if not all(x > 0 for x in winlens):
|
||||
raise ValueError(f"non-positive window length in {winlens}")
|
||||
xs = (starts[i : i + w] for w in winlens for i in range(len(starts) - w + 1))
|
||||
return [cls(x) for x in xs if not (excludezero and 0 in x)]
|
||||
|
||||
def issuperset(self, other):
|
||||
"""
|
||||
Return True if this Feature always returns True when other does
|
||||
|
||||
More precisely, return True if this feature refers to the same property as other;
|
||||
and this Feature looks at all positions that other does (and possibly
|
||||
other positions in addition).
|
||||
|
||||
#For instance, importing a concrete subclass (Feature is abstract)
|
||||
>>> from nltk.tag.brill import Word, Pos
|
||||
|
||||
>>> Word([-3,-2,-1]).issuperset(Word([-3,-2]))
|
||||
True
|
||||
|
||||
>>> Word([-3,-2,-1]).issuperset(Word([-3,-2, 0]))
|
||||
False
|
||||
|
||||
#Feature subclasses must agree
|
||||
>>> Word([-3,-2,-1]).issuperset(Pos([-3,-2]))
|
||||
False
|
||||
|
||||
:param other: feature with which to compare
|
||||
:type other: (subclass of) Feature
|
||||
:return: True if this feature is superset, otherwise False
|
||||
:rtype: bool
|
||||
|
||||
|
||||
"""
|
||||
return self.__class__ is other.__class__ and set(self.positions) >= set(
|
||||
other.positions
|
||||
)
|
||||
|
||||
def intersects(self, other):
|
||||
"""
|
||||
Return True if the positions of this Feature intersects with those of other
|
||||
|
||||
More precisely, return True if this feature refers to the same property as other;
|
||||
and there is some overlap in the positions they look at.
|
||||
|
||||
#For instance, importing a concrete subclass (Feature is abstract)
|
||||
>>> from nltk.tag.brill import Word, Pos
|
||||
|
||||
>>> Word([-3,-2,-1]).intersects(Word([-3,-2]))
|
||||
True
|
||||
|
||||
>>> Word([-3,-2,-1]).intersects(Word([-3,-2, 0]))
|
||||
True
|
||||
|
||||
>>> Word([-3,-2,-1]).intersects(Word([0]))
|
||||
False
|
||||
|
||||
#Feature subclasses must agree
|
||||
>>> Word([-3,-2,-1]).intersects(Pos([-3,-2]))
|
||||
False
|
||||
|
||||
:param other: feature with which to compare
|
||||
:type other: (subclass of) Feature
|
||||
:return: True if feature classes agree and there is some overlap in the positions they look at
|
||||
:rtype: bool
|
||||
"""
|
||||
|
||||
return bool(
|
||||
self.__class__ is other.__class__
|
||||
and set(self.positions) & set(other.positions)
|
||||
)
|
||||
|
||||
# Rich comparisons for Features. With @functools.total_ordering (Python 2.7+),
|
||||
# it will be enough to define __lt__ and __eq__
|
||||
def __eq__(self, other):
|
||||
return self.__class__ is other.__class__ and self.positions == other.positions
|
||||
|
||||
def __lt__(self, other):
|
||||
return (
|
||||
self.__class__.__name__ < other.__class__.__name__
|
||||
or
|
||||
# self.positions is a sorted tuple of ints
|
||||
self.positions < other.positions
|
||||
)
|
||||
|
||||
def __ne__(self, other):
|
||||
return not (self == other)
|
||||
|
||||
def __gt__(self, other):
|
||||
return other < self
|
||||
|
||||
def __ge__(self, other):
|
||||
return not self < other
|
||||
|
||||
def __le__(self, other):
|
||||
return self < other or self == other
|
||||
|
||||
@staticmethod
|
||||
@abstractmethod
|
||||
def extract_property(tokens, index):
|
||||
"""
|
||||
Any subclass of Feature must define static method extract_property(tokens, index)
|
||||
|
||||
:param tokens: the sequence of tokens
|
||||
:type tokens: list of tokens
|
||||
:param index: the current index
|
||||
:type index: int
|
||||
:return: feature value
|
||||
:rtype: any (but usually scalar)
|
||||
"""
|
||||
Reference in New Issue
Block a user