This commit is contained in:
Iliyan Angelov
2025-12-01 06:50:10 +02:00
parent 91f51bc6fe
commit 62c1fe5951
4682 changed files with 544807 additions and 31208 deletions

View File

@@ -0,0 +1,34 @@
# Natural Language Toolkit: Stemmers
#
# Copyright (C) 2001-2025 NLTK Project
# Author: Trevor Cohn <tacohn@cs.mu.oz.au>
# Edward Loper <edloper@gmail.com>
# Steven Bird <stevenbird1@gmail.com>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
"""
NLTK Stemmers
Interfaces used to remove morphological affixes from words, leaving
only the word stem. Stemming algorithms aim to remove those affixes
required for eg. grammatical role, tense, derivational morphology
leaving only the stem of the word. This is a difficult problem due to
irregular words (eg. common verbs in English), complicated
morphological rules, and part-of-speech and sense ambiguities
(eg. ``ceil-`` is not the stem of ``ceiling``).
StemmerI defines a standard interface for stemmers.
"""
from nltk.stem.api import StemmerI
from nltk.stem.arlstem import ARLSTem
from nltk.stem.arlstem2 import ARLSTem2
from nltk.stem.cistem import Cistem
from nltk.stem.isri import ISRIStemmer
from nltk.stem.lancaster import LancasterStemmer
from nltk.stem.porter import PorterStemmer
from nltk.stem.regexp import RegexpStemmer
from nltk.stem.rslp import RSLPStemmer
from nltk.stem.snowball import SnowballStemmer
from nltk.stem.wordnet import WordNetLemmatizer

View File

@@ -0,0 +1,27 @@
# Natural Language Toolkit: Stemmer Interface
#
# Copyright (C) 2001-2025 NLTK Project
# Author: Trevor Cohn <tacohn@cs.mu.oz.au>
# Edward Loper <edloper@gmail.com>
# Steven Bird <stevenbird1@gmail.com>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
from abc import ABCMeta, abstractmethod
class StemmerI(metaclass=ABCMeta):
"""
A processing interface for removing morphological affixes from
words. This process is known as stemming.
"""
@abstractmethod
def stem(self, token):
"""
Strip affixes from the token and return the stem.
:param token: The token that should be stemmed.
:type token: str
"""

View File

@@ -0,0 +1,361 @@
#
# Natural Language Toolkit: ARLSTem Stemmer
#
# Copyright (C) 2001-2025 NLTK Project
#
# Author: Kheireddine Abainia (x-programer) <k.abainia@gmail.com>
# Algorithms: Kheireddine Abainia <k.abainia@gmail.com>
# Siham Ouamour
# Halim Sayoud
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
"""
ARLSTem Arabic Stemmer
The details about the implementation of this algorithm are described in:
K. Abainia, S. Ouamour and H. Sayoud, A Novel Robust Arabic Light Stemmer ,
Journal of Experimental & Theoretical Artificial Intelligence (JETAI'17),
Vol. 29, No. 3, 2017, pp. 557-573.
The ARLSTem is a light Arabic stemmer that is based on removing the affixes
from the word (i.e. prefixes, suffixes and infixes). It was evaluated and
compared to several other stemmers using Paice's parameters (under-stemming
index, over-stemming index and stemming weight), and the results showed that
ARLSTem is promising and producing high performances. This stemmer is not
based on any dictionary and can be used on-line effectively.
"""
import re
from nltk.stem.api import StemmerI
class ARLSTem(StemmerI):
"""
ARLSTem stemmer : a light Arabic Stemming algorithm without any dictionary.
Department of Telecommunication & Information Processing. USTHB University,
Algiers, Algeria.
ARLSTem.stem(token) returns the Arabic stem for the input token.
The ARLSTem Stemmer requires that all tokens are encoded using Unicode
encoding.
"""
def __init__(self):
# different Alif with hamza
self.re_hamzated_alif = re.compile(r"[\u0622\u0623\u0625]")
self.re_alifMaqsura = re.compile(r"[\u0649]")
self.re_diacritics = re.compile(r"[\u064B-\u065F]")
# Alif Laam, Laam Laam, Fa Laam, Fa Ba
self.pr2 = ["\u0627\u0644", "\u0644\u0644", "\u0641\u0644", "\u0641\u0628"]
# Ba Alif Laam, Kaaf Alif Laam, Waaw Alif Laam
self.pr3 = ["\u0628\u0627\u0644", "\u0643\u0627\u0644", "\u0648\u0627\u0644"]
# Fa Laam Laam, Waaw Laam Laam
self.pr32 = ["\u0641\u0644\u0644", "\u0648\u0644\u0644"]
# Fa Ba Alif Laam, Waaw Ba Alif Laam, Fa Kaaf Alif Laam
self.pr4 = [
"\u0641\u0628\u0627\u0644",
"\u0648\u0628\u0627\u0644",
"\u0641\u0643\u0627\u0644",
]
# Kaf Yaa, Kaf Miim
self.su2 = ["\u0643\u064A", "\u0643\u0645"]
# Ha Alif, Ha Miim
self.su22 = ["\u0647\u0627", "\u0647\u0645"]
# Kaf Miim Alif, Kaf Noon Shadda
self.su3 = ["\u0643\u0645\u0627", "\u0643\u0646\u0651"]
# Ha Miim Alif, Ha Noon Shadda
self.su32 = ["\u0647\u0645\u0627", "\u0647\u0646\u0651"]
# Alif Noon, Ya Noon, Waaw Noon
self.pl_si2 = ["\u0627\u0646", "\u064A\u0646", "\u0648\u0646"]
# Taa Alif Noon, Taa Ya Noon
self.pl_si3 = ["\u062A\u0627\u0646", "\u062A\u064A\u0646"]
# Alif Noon, Waaw Noon
self.verb_su2 = ["\u0627\u0646", "\u0648\u0646"]
# Siin Taa, Siin Yaa
self.verb_pr2 = ["\u0633\u062A", "\u0633\u064A"]
# Siin Alif, Siin Noon
self.verb_pr22 = ["\u0633\u0627", "\u0633\u0646"]
# Lam Noon, Lam Taa, Lam Yaa, Lam Hamza
self.verb_pr33 = [
"\u0644\u0646",
"\u0644\u062A",
"\u0644\u064A",
"\u0644\u0623",
]
# Taa Miim Alif, Taa Noon Shadda
self.verb_suf3 = ["\u062A\u0645\u0627", "\u062A\u0646\u0651"]
# Noon Alif, Taa Miim, Taa Alif, Waaw Alif
self.verb_suf2 = [
"\u0646\u0627",
"\u062A\u0645",
"\u062A\u0627",
"\u0648\u0627",
]
# Taa, Alif, Noon
self.verb_suf1 = ["\u062A", "\u0627", "\u0646"]
def stem(self, token):
"""
call this function to get the word's stem based on ARLSTem .
"""
try:
if token is None:
raise ValueError(
"The word could not be stemmed, because \
it is empty !"
)
# remove Arabic diacritics and replace some letters with others
token = self.norm(token)
# strip common prefixes of the nouns
pre = self.pref(token)
if pre is not None:
token = pre
# strip the suffixes which are common to nouns and verbs
token = self.suff(token)
# transform a plural noun to a singular noun
ps = self.plur2sing(token)
if ps is None:
# transform from the feminine form to the masculine form
fm = self.fem2masc(token)
if fm is not None:
return fm
else:
if pre is None: # if the prefixes are not stripped
# strip the verb prefixes and suffixes
return self.verb(token)
else:
return ps
return token
except ValueError as e:
print(e)
def norm(self, token):
"""
normalize the word by removing diacritics, replacing hamzated Alif
with Alif replacing AlifMaqsura with Yaa and removing Waaw at the
beginning.
"""
# strip Arabic diacritics
token = self.re_diacritics.sub("", token)
# replace Hamzated Alif with Alif bare
token = self.re_hamzated_alif.sub("\u0627", token)
# replace alifMaqsura with Yaa
token = self.re_alifMaqsura.sub("\u064A", token)
# strip the Waaw from the word beginning if the remaining is 3 letters
# at least
if token.startswith("\u0648") and len(token) > 3:
token = token[1:]
return token
def pref(self, token):
"""
remove prefixes from the words' beginning.
"""
if len(token) > 5:
for p3 in self.pr3:
if token.startswith(p3):
return token[3:]
if len(token) > 6:
for p4 in self.pr4:
if token.startswith(p4):
return token[4:]
if len(token) > 5:
for p3 in self.pr32:
if token.startswith(p3):
return token[3:]
if len(token) > 4:
for p2 in self.pr2:
if token.startswith(p2):
return token[2:]
def suff(self, token):
"""
remove suffixes from the word's end.
"""
if token.endswith("\u0643") and len(token) > 3:
return token[:-1]
if len(token) > 4:
for s2 in self.su2:
if token.endswith(s2):
return token[:-2]
if len(token) > 5:
for s3 in self.su3:
if token.endswith(s3):
return token[:-3]
if token.endswith("\u0647") and len(token) > 3:
token = token[:-1]
return token
if len(token) > 4:
for s2 in self.su22:
if token.endswith(s2):
return token[:-2]
if len(token) > 5:
for s3 in self.su32:
if token.endswith(s3):
return token[:-3]
if token.endswith("\u0646\u0627") and len(token) > 4:
return token[:-2]
return token
def fem2masc(self, token):
"""
transform the word from the feminine form to the masculine form.
"""
if token.endswith("\u0629") and len(token) > 3:
return token[:-1]
def plur2sing(self, token):
"""
transform the word from the plural form to the singular form.
"""
if len(token) > 4:
for ps2 in self.pl_si2:
if token.endswith(ps2):
return token[:-2]
if len(token) > 5:
for ps3 in self.pl_si3:
if token.endswith(ps3):
return token[:-3]
if len(token) > 3 and token.endswith("\u0627\u062A"):
return token[:-2]
if len(token) > 3 and token.startswith("\u0627") and token[2] == "\u0627":
return token[:2] + token[3:]
if len(token) > 4 and token.startswith("\u0627") and token[-2] == "\u0627":
return token[1:-2] + token[-1]
def verb(self, token):
"""
stem the verb prefixes and suffixes or both
"""
vb = self.verb_t1(token)
if vb is not None:
return vb
vb = self.verb_t2(token)
if vb is not None:
return vb
vb = self.verb_t3(token)
if vb is not None:
return vb
vb = self.verb_t4(token)
if vb is not None:
return vb
vb = self.verb_t5(token)
if vb is not None:
return vb
return self.verb_t6(token)
def verb_t1(self, token):
"""
stem the present prefixes and suffixes
"""
if len(token) > 5 and token.startswith("\u062A"): # Taa
for s2 in self.pl_si2:
if token.endswith(s2):
return token[1:-2]
if len(token) > 5 and token.startswith("\u064A"): # Yaa
for s2 in self.verb_su2:
if token.endswith(s2):
return token[1:-2]
if len(token) > 4 and token.startswith("\u0627"): # Alif
# Waaw Alif
if len(token) > 5 and token.endswith("\u0648\u0627"):
return token[1:-2]
# Yaa
if token.endswith("\u064A"):
return token[1:-1]
# Alif
if token.endswith("\u0627"):
return token[1:-1]
# Noon
if token.endswith("\u0646"):
return token[1:-1]
# ^Yaa, Noon$
if len(token) > 4 and token.startswith("\u064A") and token.endswith("\u0646"):
return token[1:-1]
# ^Taa, Noon$
if len(token) > 4 and token.startswith("\u062A") and token.endswith("\u0646"):
return token[1:-1]
def verb_t2(self, token):
"""
stem the future prefixes and suffixes
"""
if len(token) > 6:
for s2 in self.pl_si2:
# ^Siin Taa
if token.startswith(self.verb_pr2[0]) and token.endswith(s2):
return token[2:-2]
# ^Siin Yaa, Alif Noon$
if token.startswith(self.verb_pr2[1]) and token.endswith(self.pl_si2[0]):
return token[2:-2]
# ^Siin Yaa, Waaw Noon$
if token.startswith(self.verb_pr2[1]) and token.endswith(self.pl_si2[2]):
return token[2:-2]
# ^Siin Taa, Noon$
if (
len(token) > 5
and token.startswith(self.verb_pr2[0])
and token.endswith("\u0646")
):
return token[2:-1]
# ^Siin Yaa, Noon$
if (
len(token) > 5
and token.startswith(self.verb_pr2[1])
and token.endswith("\u0646")
):
return token[2:-1]
def verb_t3(self, token):
"""
stem the present suffixes
"""
if len(token) > 5:
for su3 in self.verb_suf3:
if token.endswith(su3):
return token[:-3]
if len(token) > 4:
for su2 in self.verb_suf2:
if token.endswith(su2):
return token[:-2]
if len(token) > 3:
for su1 in self.verb_suf1:
if token.endswith(su1):
return token[:-1]
def verb_t4(self, token):
"""
stem the present prefixes
"""
if len(token) > 3:
for pr1 in self.verb_suf1:
if token.startswith(pr1):
return token[1:]
if token.startswith("\u064A"):
return token[1:]
def verb_t5(self, token):
"""
stem the future prefixes
"""
if len(token) > 4:
for pr2 in self.verb_pr22:
if token.startswith(pr2):
return token[2:]
for pr2 in self.verb_pr2:
if token.startswith(pr2):
return token[2:]
return token
def verb_t6(self, token):
"""
stem the order prefixes
"""
if len(token) > 4:
for pr3 in self.verb_pr33:
if token.startswith(pr3):
return token[2:]
return token

View File

@@ -0,0 +1,457 @@
#
# Natural Language Toolkit: ARLSTem Stemmer v2
#
# Copyright (C) 2001-2025 NLTK Project
#
# Author: Kheireddine Abainia (x-programer) <k.abainia@gmail.com>
# Algorithms: Kheireddine Abainia <k.abainia@gmail.com>
# Hamza Rebbani <hamrebbani@gmail.com>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
"""
ARLSTem2 Arabic Light Stemmer
The details about the implementation of this algorithm are described in:
K. Abainia and H. Rebbani, Comparing the Effectiveness of the Improved ARLSTem
Algorithm with Existing Arabic Light Stemmers, International Conference on
Theoretical and Applicative Aspects of Computer Science (ICTAACS'19), Skikda,
Algeria, December 15-16, 2019.
ARLSTem2 is an Arabic light stemmer based on removing the affixes from
the words (i.e. prefixes, suffixes and infixes). It is an improvement
of the previous Arabic light stemmer (ARLSTem). The new version was compared to
the original algorithm and several existing Arabic light stemmers, where the
results showed that the new version considerably improves the under-stemming
errors that are common to light stemmers. Both ARLSTem and ARLSTem2 can be run
online and do not use any dictionary.
"""
import re
from nltk.stem.api import StemmerI
class ARLSTem2(StemmerI):
"""
Return a stemmed Arabic word after removing affixes. This an improved
version of the previous algorithm, which reduces under-stemming errors.
Typically used in Arabic search engine, information retrieval and NLP.
>>> from nltk.stem import arlstem2
>>> stemmer = ARLSTem2()
>>> word = stemmer.stem('يعمل')
>>> print(word)
عمل
:param token: The input Arabic word (unicode) to be stemmed
:type token: unicode
:return: A unicode Arabic word
"""
def __init__(self):
# different Alif with hamza
self.re_hamzated_alif = re.compile(r"[\u0622\u0623\u0625]")
self.re_alifMaqsura = re.compile(r"[\u0649]")
self.re_diacritics = re.compile(r"[\u064B-\u065F]")
# Alif Laam, Laam Laam, Fa Laam, Fa Ba
self.pr2 = ["\u0627\u0644", "\u0644\u0644", "\u0641\u0644", "\u0641\u0628"]
# Ba Alif Laam, Kaaf Alif Laam, Waaw Alif Laam
self.pr3 = ["\u0628\u0627\u0644", "\u0643\u0627\u0644", "\u0648\u0627\u0644"]
# Fa Laam Laam, Waaw Laam Laam
self.pr32 = ["\u0641\u0644\u0644", "\u0648\u0644\u0644"]
# Fa Ba Alif Laam, Waaw Ba Alif Laam, Fa Kaaf Alif Laam
self.pr4 = [
"\u0641\u0628\u0627\u0644",
"\u0648\u0628\u0627\u0644",
"\u0641\u0643\u0627\u0644",
]
# Kaf Yaa, Kaf Miim
self.su2 = ["\u0643\u064A", "\u0643\u0645"]
# Ha Alif, Ha Miim
self.su22 = ["\u0647\u0627", "\u0647\u0645"]
# Kaf Miim Alif, Kaf Noon Shadda
self.su3 = ["\u0643\u0645\u0627", "\u0643\u0646\u0651"]
# Ha Miim Alif, Ha Noon Shadda
self.su32 = ["\u0647\u0645\u0627", "\u0647\u0646\u0651"]
# Alif Noon, Ya Noon, Waaw Noon
self.pl_si2 = ["\u0627\u0646", "\u064A\u0646", "\u0648\u0646"]
# Taa Alif Noon, Taa Ya Noon
self.pl_si3 = ["\u062A\u0627\u0646", "\u062A\u064A\u0646"]
# Alif Noon, Waaw Noon
self.verb_su2 = ["\u0627\u0646", "\u0648\u0646"]
# Siin Taa, Siin Yaa
self.verb_pr2 = ["\u0633\u062A", "\u0633\u064A"]
# Siin Alif, Siin Noon
self.verb_pr22 = ["\u0633\u0627", "\u0633\u0646"]
# Lam Noon, Lam Taa, Lam Yaa, Lam Hamza
self.verb_pr33 = [
"\u0644\u0646",
"\u0644\u062A",
"\u0644\u064A",
"\u0644\u0623",
]
# Taa Miim Alif, Taa Noon Shadda
self.verb_suf3 = ["\u062A\u0645\u0627", "\u062A\u0646\u0651"]
# Noon Alif, Taa Miim, Taa Alif, Waaw Alif
self.verb_suf2 = [
"\u0646\u0627",
"\u062A\u0645",
"\u062A\u0627",
"\u0648\u0627",
]
# Taa, Alif, Noon
self.verb_suf1 = ["\u062A", "\u0627", "\u0646"]
def stem1(self, token):
"""
call this function to get the first stem
"""
try:
if token is None:
raise ValueError(
"The word could not be stemmed, because \
it is empty !"
)
self.is_verb = False
# remove Arabic diacritics and replace some letters with others
token = self.norm(token)
# strip the common noun prefixes
pre = self.pref(token)
if pre is not None:
token = pre
# transform the feminine form to masculine form
fm = self.fem2masc(token)
if fm is not None:
return fm
# strip the adjective affixes
adj = self.adjective(token)
if adj is not None:
return adj
# strip the suffixes that are common to nouns and verbs
token = self.suff(token)
# transform a plural noun to a singular noun
ps = self.plur2sing(token)
if ps is None:
if pre is None: # if the noun prefixes are not stripped
# strip the verb prefixes and suffixes
verb = self.verb(token)
if verb is not None:
self.is_verb = True
return verb
else:
return ps
return token
except ValueError as e:
print(e)
def stem(self, token):
# stem the input word
try:
if token is None:
raise ValueError(
"The word could not be stemmed, because \
it is empty !"
)
# run the first round of stemming
token = self.stem1(token)
# check if there is some additional noun affixes
if len(token) > 4:
# ^Taa, $Yaa + char
if token.startswith("\u062A") and token[-2] == "\u064A":
token = token[1:-2] + token[-1]
return token
# ^Miim, $Waaw + char
if token.startswith("\u0645") and token[-2] == "\u0648":
token = token[1:-2] + token[-1]
return token
if len(token) > 3:
# !^Alif, $Yaa
if not token.startswith("\u0627") and token.endswith("\u064A"):
token = token[:-1]
return token
# $Laam
if token.startswith("\u0644"):
return token[1:]
return token
except ValueError as e:
print(e)
def norm(self, token):
"""
normalize the word by removing diacritics, replace hamzated Alif
with Alif bare, replace AlifMaqsura with Yaa and remove Waaw at the
beginning.
"""
# strip Arabic diacritics
token = self.re_diacritics.sub("", token)
# replace Hamzated Alif with Alif bare
token = self.re_hamzated_alif.sub("\u0627", token)
# replace alifMaqsura with Yaa
token = self.re_alifMaqsura.sub("\u064A", token)
# strip the Waaw from the word beginning if the remaining is
# tri-literal at least
if token.startswith("\u0648") and len(token) > 3:
token = token[1:]
return token
def pref(self, token):
"""
remove prefixes from the words' beginning.
"""
if len(token) > 5:
for p3 in self.pr3:
if token.startswith(p3):
return token[3:]
if len(token) > 6:
for p4 in self.pr4:
if token.startswith(p4):
return token[4:]
if len(token) > 5:
for p3 in self.pr32:
if token.startswith(p3):
return token[3:]
if len(token) > 4:
for p2 in self.pr2:
if token.startswith(p2):
return token[2:]
def adjective(self, token):
"""
remove the infixes from adjectives
"""
# ^Alif, Alif, $Yaa
if len(token) > 5:
if (
token.startswith("\u0627")
and token[-3] == "\u0627"
and token.endswith("\u064A")
):
return token[:-3] + token[-2]
def suff(self, token):
"""
remove the suffixes from the word's ending.
"""
if token.endswith("\u0643") and len(token) > 3:
return token[:-1]
if len(token) > 4:
for s2 in self.su2:
if token.endswith(s2):
return token[:-2]
if len(token) > 5:
for s3 in self.su3:
if token.endswith(s3):
return token[:-3]
if token.endswith("\u0647") and len(token) > 3:
token = token[:-1]
return token
if len(token) > 4:
for s2 in self.su22:
if token.endswith(s2):
return token[:-2]
if len(token) > 5:
for s3 in self.su32:
if token.endswith(s3):
return token[:-3]
# $Noon and Alif
if token.endswith("\u0646\u0627") and len(token) > 4:
return token[:-2]
return token
def fem2masc(self, token):
"""
transform the word from the feminine form to the masculine form.
"""
if len(token) > 6:
# ^Taa, Yaa, $Yaa and Taa Marbuta
if (
token.startswith("\u062A")
and token[-4] == "\u064A"
and token.endswith("\u064A\u0629")
):
return token[1:-4] + token[-3]
# ^Alif, Yaa, $Yaa and Taa Marbuta
if (
token.startswith("\u0627")
and token[-4] == "\u0627"
and token.endswith("\u064A\u0629")
):
return token[:-4] + token[-3]
# $Alif, Yaa and Taa Marbuta
if token.endswith("\u0627\u064A\u0629") and len(token) > 5:
return token[:-2]
if len(token) > 4:
# Alif, $Taa Marbuta
if token[1] == "\u0627" and token.endswith("\u0629"):
return token[0] + token[2:-1]
# $Yaa and Taa Marbuta
if token.endswith("\u064A\u0629"):
return token[:-2]
# $Taa Marbuta
if token.endswith("\u0629") and len(token) > 3:
return token[:-1]
def plur2sing(self, token):
"""
transform the word from the plural form to the singular form.
"""
# ^Haa, $Noon, Waaw
if len(token) > 5:
if token.startswith("\u0645") and token.endswith("\u0648\u0646"):
return token[1:-2]
if len(token) > 4:
for ps2 in self.pl_si2:
if token.endswith(ps2):
return token[:-2]
if len(token) > 5:
for ps3 in self.pl_si3:
if token.endswith(ps3):
return token[:-3]
if len(token) > 4:
# $Alif, Taa
if token.endswith("\u0627\u062A"):
return token[:-2]
# ^Alif Alif
if token.startswith("\u0627") and token[2] == "\u0627":
return token[:2] + token[3:]
# ^Alif Alif
if token.startswith("\u0627") and token[-2] == "\u0627":
return token[1:-2] + token[-1]
def verb(self, token):
"""
stem the verb prefixes and suffixes or both
"""
vb = self.verb_t1(token)
if vb is not None:
return vb
vb = self.verb_t2(token)
if vb is not None:
return vb
vb = self.verb_t3(token)
if vb is not None:
return vb
vb = self.verb_t4(token)
if vb is not None:
return vb
vb = self.verb_t5(token)
if vb is not None:
return vb
vb = self.verb_t6(token)
return vb
def verb_t1(self, token):
"""
stem the present tense co-occurred prefixes and suffixes
"""
if len(token) > 5 and token.startswith("\u062A"): # Taa
for s2 in self.pl_si2:
if token.endswith(s2):
return token[1:-2]
if len(token) > 5 and token.startswith("\u064A"): # Yaa
for s2 in self.verb_su2:
if token.endswith(s2):
return token[1:-2]
if len(token) > 4 and token.startswith("\u0627"): # Alif
# Waaw Alif
if len(token) > 5 and token.endswith("\u0648\u0627"):
return token[1:-2]
# Yaa
if token.endswith("\u064A"):
return token[1:-1]
# Alif
if token.endswith("\u0627"):
return token[1:-1]
# Noon
if token.endswith("\u0646"):
return token[1:-1]
# ^Yaa, Noon$
if len(token) > 4 and token.startswith("\u064A") and token.endswith("\u0646"):
return token[1:-1]
# ^Taa, Noon$
if len(token) > 4 and token.startswith("\u062A") and token.endswith("\u0646"):
return token[1:-1]
def verb_t2(self, token):
"""
stem the future tense co-occurred prefixes and suffixes
"""
if len(token) > 6:
for s2 in self.pl_si2:
# ^Siin Taa
if token.startswith(self.verb_pr2[0]) and token.endswith(s2):
return token[2:-2]
# ^Siin Yaa, Alif Noon$
if token.startswith(self.verb_pr2[1]) and token.endswith(self.pl_si2[0]):
return token[2:-2]
# ^Siin Yaa, Waaw Noon$
if token.startswith(self.verb_pr2[1]) and token.endswith(self.pl_si2[2]):
return token[2:-2]
# ^Siin Taa, Noon$
if (
len(token) > 5
and token.startswith(self.verb_pr2[0])
and token.endswith("\u0646")
):
return token[2:-1]
# ^Siin Yaa, Noon$
if (
len(token) > 5
and token.startswith(self.verb_pr2[1])
and token.endswith("\u0646")
):
return token[2:-1]
def verb_t3(self, token):
"""
stem the present tense suffixes
"""
if len(token) > 5:
for su3 in self.verb_suf3:
if token.endswith(su3):
return token[:-3]
if len(token) > 4:
for su2 in self.verb_suf2:
if token.endswith(su2):
return token[:-2]
if len(token) > 3:
for su1 in self.verb_suf1:
if token.endswith(su1):
return token[:-1]
def verb_t4(self, token):
"""
stem the present tense prefixes
"""
if len(token) > 3:
for pr1 in self.verb_suf1:
if token.startswith(pr1):
return token[1:]
if token.startswith("\u064A"):
return token[1:]
def verb_t5(self, token):
"""
stem the future tense prefixes
"""
if len(token) > 4:
for pr2 in self.verb_pr22:
if token.startswith(pr2):
return token[2:]
for pr2 in self.verb_pr2:
if token.startswith(pr2):
return token[2:]
def verb_t6(self, token):
"""
stem the imperative tense prefixes
"""
if len(token) > 4:
for pr3 in self.verb_pr33:
if token.startswith(pr3):
return token[2:]
return token

View File

@@ -0,0 +1,209 @@
# Natural Language Toolkit: CISTEM Stemmer for German
# Copyright (C) 2001-2025 NLTK Project
# Author: Leonie Weissweiler <l.weissweiler@outlook.de>
# Tom Aarsen <> (modifications)
# Algorithm: Leonie Weissweiler <l.weissweiler@outlook.de>
# Alexander Fraser <fraser@cis.lmu.de>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
import re
from typing import Tuple
from nltk.stem.api import StemmerI
class Cistem(StemmerI):
"""
CISTEM Stemmer for German
This is the official Python implementation of the CISTEM stemmer.
It is based on the paper
Leonie Weissweiler, Alexander Fraser (2017). Developing a Stemmer for German
Based on a Comparative Analysis of Publicly Available Stemmers.
In Proceedings of the German Society for Computational Linguistics and Language
Technology (GSCL)
which can be read here:
https://www.cis.lmu.de/~weissweiler/cistem/
In the paper, we conducted an analysis of publicly available stemmers,
developed two gold standards for German stemming and evaluated the stemmers
based on the two gold standards. We then proposed the stemmer implemented here
and show that it achieves slightly better f-measure than the other stemmers and
is thrice as fast as the Snowball stemmer for German while being about as fast
as most other stemmers.
case_insensitive is a a boolean specifying if case-insensitive stemming
should be used. Case insensitivity improves performance only if words in the
text may be incorrectly upper case. For all-lowercase and correctly cased
text, best performance is achieved by setting case_insensitive for false.
:param case_insensitive: if True, the stemming is case insensitive. False by default.
:type case_insensitive: bool
"""
strip_ge = re.compile(r"^ge(.{4,})")
repl_xx = re.compile(r"(.)\1")
strip_emr = re.compile(r"e[mr]$")
strip_nd = re.compile(r"nd$")
strip_t = re.compile(r"t$")
strip_esn = re.compile(r"[esn]$")
repl_xx_back = re.compile(r"(.)\*")
def __init__(self, case_insensitive: bool = False):
self._case_insensitive = case_insensitive
@staticmethod
def replace_to(word: str) -> str:
word = word.replace("sch", "$")
word = word.replace("ei", "%")
word = word.replace("ie", "&")
word = Cistem.repl_xx.sub(r"\1*", word)
return word
@staticmethod
def replace_back(word: str) -> str:
word = Cistem.repl_xx_back.sub(r"\1\1", word)
word = word.replace("%", "ei")
word = word.replace("&", "ie")
word = word.replace("$", "sch")
return word
def stem(self, word: str) -> str:
"""Stems the input word.
:param word: The word that is to be stemmed.
:type word: str
:return: The stemmed word.
:rtype: str
>>> from nltk.stem.cistem import Cistem
>>> stemmer = Cistem()
>>> s1 = "Speicherbehältern"
>>> stemmer.stem(s1)
'speicherbehalt'
>>> s2 = "Grenzpostens"
>>> stemmer.stem(s2)
'grenzpost'
>>> s3 = "Ausgefeiltere"
>>> stemmer.stem(s3)
'ausgefeilt'
>>> stemmer = Cistem(True)
>>> stemmer.stem(s1)
'speicherbehal'
>>> stemmer.stem(s2)
'grenzpo'
>>> stemmer.stem(s3)
'ausgefeil'
"""
if len(word) == 0:
return word
upper = word[0].isupper()
word = word.lower()
word = word.replace("ü", "u")
word = word.replace("ö", "o")
word = word.replace("ä", "a")
word = word.replace("ß", "ss")
word = Cistem.strip_ge.sub(r"\1", word)
return self._segment_inner(word, upper)[0]
def segment(self, word: str) -> Tuple[str, str]:
"""
This method works very similarly to stem (:func:'cistem.stem'). The difference is that in
addition to returning the stem, it also returns the rest that was removed at
the end. To be able to return the stem unchanged so the stem and the rest
can be concatenated to form the original word, all subsitutions that altered
the stem in any other way than by removing letters at the end were left out.
:param word: The word that is to be stemmed.
:type word: str
:return: A tuple of the stemmed word and the removed suffix.
:rtype: Tuple[str, str]
>>> from nltk.stem.cistem import Cistem
>>> stemmer = Cistem()
>>> s1 = "Speicherbehältern"
>>> stemmer.segment(s1)
('speicherbehält', 'ern')
>>> s2 = "Grenzpostens"
>>> stemmer.segment(s2)
('grenzpost', 'ens')
>>> s3 = "Ausgefeiltere"
>>> stemmer.segment(s3)
('ausgefeilt', 'ere')
>>> stemmer = Cistem(True)
>>> stemmer.segment(s1)
('speicherbehäl', 'tern')
>>> stemmer.segment(s2)
('grenzpo', 'stens')
>>> stemmer.segment(s3)
('ausgefeil', 'tere')
"""
if len(word) == 0:
return ("", "")
upper = word[0].isupper()
word = word.lower()
return self._segment_inner(word, upper)
def _segment_inner(self, word: str, upper: bool):
"""Inner method for iteratively applying the code stemming regexes.
This method receives a pre-processed variant of the word to be stemmed,
or the word to be segmented, and returns a tuple of the word and the
removed suffix.
:param word: A pre-processed variant of the word that is to be stemmed.
:type word: str
:param upper: Whether the original word started with a capital letter.
:type upper: bool
:return: A tuple of the stemmed word and the removed suffix.
:rtype: Tuple[str, str]
"""
rest_length = 0
word_copy = word[:]
# Pre-processing before applying the substitution patterns
word = Cistem.replace_to(word)
rest = ""
# Apply the substitution patterns
while len(word) > 3:
if len(word) > 5:
word, n = Cistem.strip_emr.subn("", word)
if n != 0:
rest_length += 2
continue
word, n = Cistem.strip_nd.subn("", word)
if n != 0:
rest_length += 2
continue
if not upper or self._case_insensitive:
word, n = Cistem.strip_t.subn("", word)
if n != 0:
rest_length += 1
continue
word, n = Cistem.strip_esn.subn("", word)
if n != 0:
rest_length += 1
continue
else:
break
# Post-processing after applying the substitution patterns
word = Cistem.replace_back(word)
if rest_length:
rest = word_copy[-rest_length:]
return (word, rest)

View File

@@ -0,0 +1,395 @@
#
# Natural Language Toolkit: The ISRI Arabic Stemmer
#
# Copyright (C) 2001-2025 NLTK Project
# Algorithm: Kazem Taghva, Rania Elkhoury, and Jeffrey Coombs (2005)
# Author: Hosam Algasaier <hosam_hme@yahoo.com>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
"""
ISRI Arabic Stemmer
The algorithm for this stemmer is described in:
Taghva, K., Elkoury, R., and Coombs, J. 2005. Arabic Stemming without a root dictionary.
Information Science Research Institute. University of Nevada, Las Vegas, USA.
The Information Science Research Institutes (ISRI) Arabic stemmer shares many features
with the Khoja stemmer. However, the main difference is that ISRI stemmer does not use root
dictionary. Also, if a root is not found, ISRI stemmer returned normalized form, rather than
returning the original unmodified word.
Additional adjustments were made to improve the algorithm:
1- Adding 60 stop words.
2- Adding the pattern (تفاعيل) to ISRI pattern set.
3- The step 2 in the original algorithm was normalizing all hamza. This step is discarded because it
increases the word ambiguities and changes the original root.
"""
import re
from nltk.stem.api import StemmerI
class ISRIStemmer(StemmerI):
"""
ISRI Arabic stemmer based on algorithm: Arabic Stemming without a root dictionary.
Information Science Research Institute. University of Nevada, Las Vegas, USA.
A few minor modifications have been made to ISRI basic algorithm.
See the source code of this module for more information.
isri.stem(token) returns Arabic root for the given token.
The ISRI Stemmer requires that all tokens have Unicode string types.
If you use Python IDLE on Arabic Windows you have to decode text first
using Arabic '1256' coding.
"""
def __init__(self):
# length three prefixes
self.p3 = [
"\u0643\u0627\u0644",
"\u0628\u0627\u0644",
"\u0648\u0644\u0644",
"\u0648\u0627\u0644",
]
# length two prefixes
self.p2 = ["\u0627\u0644", "\u0644\u0644"]
# length one prefixes
self.p1 = [
"\u0644",
"\u0628",
"\u0641",
"\u0633",
"\u0648",
"\u064a",
"\u062a",
"\u0646",
"\u0627",
]
# length three suffixes
self.s3 = [
"\u062a\u0645\u0644",
"\u0647\u0645\u0644",
"\u062a\u0627\u0646",
"\u062a\u064a\u0646",
"\u0643\u0645\u0644",
]
# length two suffixes
self.s2 = [
"\u0648\u0646",
"\u0627\u062a",
"\u0627\u0646",
"\u064a\u0646",
"\u062a\u0646",
"\u0643\u0645",
"\u0647\u0646",
"\u0646\u0627",
"\u064a\u0627",
"\u0647\u0627",
"\u062a\u0645",
"\u0643\u0646",
"\u0646\u064a",
"\u0648\u0627",
"\u0645\u0627",
"\u0647\u0645",
]
# length one suffixes
self.s1 = ["\u0629", "\u0647", "\u064a", "\u0643", "\u062a", "\u0627", "\u0646"]
# groups of length four patterns
self.pr4 = {
0: ["\u0645"],
1: ["\u0627"],
2: ["\u0627", "\u0648", "\u064A"],
3: ["\u0629"],
}
# Groups of length five patterns and length three roots
self.pr53 = {
0: ["\u0627", "\u062a"],
1: ["\u0627", "\u064a", "\u0648"],
2: ["\u0627", "\u062a", "\u0645"],
3: ["\u0645", "\u064a", "\u062a"],
4: ["\u0645", "\u062a"],
5: ["\u0627", "\u0648"],
6: ["\u0627", "\u0645"],
}
self.re_short_vowels = re.compile(r"[\u064B-\u0652]")
self.re_hamza = re.compile(r"[\u0621\u0624\u0626]")
self.re_initial_hamza = re.compile(r"^[\u0622\u0623\u0625]")
self.stop_words = [
"\u064a\u0643\u0648\u0646",
"\u0648\u0644\u064a\u0633",
"\u0648\u0643\u0627\u0646",
"\u0643\u0630\u0644\u0643",
"\u0627\u0644\u062a\u064a",
"\u0648\u0628\u064a\u0646",
"\u0639\u0644\u064a\u0647\u0627",
"\u0645\u0633\u0627\u0621",
"\u0627\u0644\u0630\u064a",
"\u0648\u0643\u0627\u0646\u062a",
"\u0648\u0644\u0643\u0646",
"\u0648\u0627\u0644\u062a\u064a",
"\u062a\u0643\u0648\u0646",
"\u0627\u0644\u064a\u0648\u0645",
"\u0627\u0644\u0644\u0630\u064a\u0646",
"\u0639\u0644\u064a\u0647",
"\u0643\u0627\u0646\u062a",
"\u0644\u0630\u0644\u0643",
"\u0623\u0645\u0627\u0645",
"\u0647\u0646\u0627\u0643",
"\u0645\u0646\u0647\u0627",
"\u0645\u0627\u0632\u0627\u0644",
"\u0644\u0627\u0632\u0627\u0644",
"\u0644\u0627\u064a\u0632\u0627\u0644",
"\u0645\u0627\u064a\u0632\u0627\u0644",
"\u0627\u0635\u0628\u062d",
"\u0623\u0635\u0628\u062d",
"\u0623\u0645\u0633\u0649",
"\u0627\u0645\u0633\u0649",
"\u0623\u0636\u062d\u0649",
"\u0627\u0636\u062d\u0649",
"\u0645\u0627\u0628\u0631\u062d",
"\u0645\u0627\u0641\u062a\u0626",
"\u0645\u0627\u0627\u0646\u0641\u0643",
"\u0644\u0627\u0633\u064a\u0645\u0627",
"\u0648\u0644\u0627\u064a\u0632\u0627\u0644",
"\u0627\u0644\u062d\u0627\u0644\u064a",
"\u0627\u0644\u064a\u0647\u0627",
"\u0627\u0644\u0630\u064a\u0646",
"\u0641\u0627\u0646\u0647",
"\u0648\u0627\u0644\u0630\u064a",
"\u0648\u0647\u0630\u0627",
"\u0644\u0647\u0630\u0627",
"\u0641\u0643\u0627\u0646",
"\u0633\u062a\u0643\u0648\u0646",
"\u0627\u0644\u064a\u0647",
"\u064a\u0645\u0643\u0646",
"\u0628\u0647\u0630\u0627",
"\u0627\u0644\u0630\u0649",
]
def stem(self, token):
"""
Stemming a word token using the ISRI stemmer.
"""
token = self.norm(
token, 1
) # remove diacritics which representing Arabic short vowels
if token in self.stop_words:
return token # exclude stop words from being processed
token = self.pre32(
token
) # remove length three and length two prefixes in this order
token = self.suf32(
token
) # remove length three and length two suffixes in this order
token = self.waw(
token
) # remove connective ‘و’ if it precedes a word beginning with ‘و’
token = self.norm(token, 2) # normalize initial hamza to bare alif
# if 4 <= word length <= 7, then stem; otherwise, no stemming
if len(token) == 4: # length 4 word
token = self.pro_w4(token)
elif len(token) == 5: # length 5 word
token = self.pro_w53(token)
token = self.end_w5(token)
elif len(token) == 6: # length 6 word
token = self.pro_w6(token)
token = self.end_w6(token)
elif len(token) == 7: # length 7 word
token = self.suf1(token)
if len(token) == 7:
token = self.pre1(token)
if len(token) == 6:
token = self.pro_w6(token)
token = self.end_w6(token)
return token
def norm(self, word, num=3):
"""
normalization:
num=1 normalize diacritics
num=2 normalize initial hamza
num=3 both 1&2
"""
if num == 1:
word = self.re_short_vowels.sub("", word)
elif num == 2:
word = self.re_initial_hamza.sub("\u0627", word)
elif num == 3:
word = self.re_short_vowels.sub("", word)
word = self.re_initial_hamza.sub("\u0627", word)
return word
def pre32(self, word):
"""remove length three and length two prefixes in this order"""
if len(word) >= 6:
for pre3 in self.p3:
if word.startswith(pre3):
return word[3:]
if len(word) >= 5:
for pre2 in self.p2:
if word.startswith(pre2):
return word[2:]
return word
def suf32(self, word):
"""remove length three and length two suffixes in this order"""
if len(word) >= 6:
for suf3 in self.s3:
if word.endswith(suf3):
return word[:-3]
if len(word) >= 5:
for suf2 in self.s2:
if word.endswith(suf2):
return word[:-2]
return word
def waw(self, word):
"""remove connective ‘و’ if it precedes a word beginning with ‘و’"""
if len(word) >= 4 and word[:2] == "\u0648\u0648":
word = word[1:]
return word
def pro_w4(self, word):
"""process length four patterns and extract length three roots"""
if word[0] in self.pr4[0]: # مفعل
word = word[1:]
elif word[1] in self.pr4[1]: # فاعل
word = word[:1] + word[2:]
elif word[2] in self.pr4[2]: # فعال - فعول - فعيل
word = word[:2] + word[3]
elif word[3] in self.pr4[3]: # فعلة
word = word[:-1]
else:
word = self.suf1(word) # do - normalize short sufix
if len(word) == 4:
word = self.pre1(word) # do - normalize short prefix
return word
def pro_w53(self, word):
"""process length five patterns and extract length three roots"""
if word[2] in self.pr53[0] and word[0] == "\u0627": # افتعل - افاعل
word = word[1] + word[3:]
elif word[3] in self.pr53[1] and word[0] == "\u0645": # مفعول - مفعال - مفعيل
word = word[1:3] + word[4]
elif word[0] in self.pr53[2] and word[4] == "\u0629": # مفعلة - تفعلة - افعلة
word = word[1:4]
elif word[0] in self.pr53[3] and word[2] == "\u062a": # مفتعل - يفتعل - تفتعل
word = word[1] + word[3:]
elif word[0] in self.pr53[4] and word[2] == "\u0627": # مفاعل - تفاعل
word = word[1] + word[3:]
elif word[2] in self.pr53[5] and word[4] == "\u0629": # فعولة - فعالة
word = word[:2] + word[3]
elif word[0] in self.pr53[6] and word[1] == "\u0646": # انفعل - منفعل
word = word[2:]
elif word[3] == "\u0627" and word[0] == "\u0627": # افعال
word = word[1:3] + word[4]
elif word[4] == "\u0646" and word[3] == "\u0627": # فعلان
word = word[:3]
elif word[3] == "\u064a" and word[0] == "\u062a": # تفعيل
word = word[1:3] + word[4]
elif word[3] == "\u0648" and word[1] == "\u0627": # فاعول
word = word[0] + word[2] + word[4]
elif word[2] == "\u0627" and word[1] == "\u0648": # فواعل
word = word[0] + word[3:]
elif word[3] == "\u0626" and word[2] == "\u0627": # فعائل
word = word[:2] + word[4]
elif word[4] == "\u0629" and word[1] == "\u0627": # فاعلة
word = word[0] + word[2:4]
elif word[4] == "\u064a" and word[2] == "\u0627": # فعالي
word = word[:2] + word[3]
else:
word = self.suf1(word) # do - normalize short sufix
if len(word) == 5:
word = self.pre1(word) # do - normalize short prefix
return word
def pro_w54(self, word):
"""process length five patterns and extract length four roots"""
if word[0] in self.pr53[2]: # تفعلل - افعلل - مفعلل
word = word[1:]
elif word[4] == "\u0629": # فعللة
word = word[:4]
elif word[2] == "\u0627": # فعالل
word = word[:2] + word[3:]
return word
def end_w5(self, word):
"""ending step (word of length five)"""
if len(word) == 4:
word = self.pro_w4(word)
elif len(word) == 5:
word = self.pro_w54(word)
return word
def pro_w6(self, word):
"""process length six patterns and extract length three roots"""
if word.startswith("\u0627\u0633\u062a") or word.startswith(
"\u0645\u0633\u062a"
): # مستفعل - استفعل
word = word[3:]
elif (
word[0] == "\u0645" and word[3] == "\u0627" and word[5] == "\u0629"
): # مفعالة
word = word[1:3] + word[4]
elif (
word[0] == "\u0627" and word[2] == "\u062a" and word[4] == "\u0627"
): # افتعال
word = word[1] + word[3] + word[5]
elif (
word[0] == "\u0627" and word[3] == "\u0648" and word[2] == word[4]
): # افعوعل
word = word[1] + word[4:]
elif (
word[0] == "\u062a" and word[2] == "\u0627" and word[4] == "\u064a"
): # تفاعيل new pattern
word = word[1] + word[3] + word[5]
else:
word = self.suf1(word) # do - normalize short sufix
if len(word) == 6:
word = self.pre1(word) # do - normalize short prefix
return word
def pro_w64(self, word):
"""process length six patterns and extract length four roots"""
if word[0] == "\u0627" and word[4] == "\u0627": # افعلال
word = word[1:4] + word[5]
elif word.startswith("\u0645\u062a"): # متفعلل
word = word[2:]
return word
def end_w6(self, word):
"""ending step (word of length six)"""
if len(word) == 5:
word = self.pro_w53(word)
word = self.end_w5(word)
elif len(word) == 6:
word = self.pro_w64(word)
return word
def suf1(self, word):
"""normalize short sufix"""
for sf1 in self.s1:
if word.endswith(sf1):
return word[:-1]
return word
def pre1(self, word):
"""normalize short prefix"""
for sp1 in self.p1:
if word.startswith(sp1):
return word[1:]
return word

View File

@@ -0,0 +1,342 @@
# Natural Language Toolkit: Stemmers
#
# Copyright (C) 2001-2025 NLTK Project
# Author: Steven Tomcavage <stomcava@law.upenn.edu>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
"""
A word stemmer based on the Lancaster (Paice/Husk) stemming algorithm.
Paice, Chris D. "Another Stemmer." ACM SIGIR Forum 24.3 (1990): 56-61.
"""
import re
from nltk.stem.api import StemmerI
class LancasterStemmer(StemmerI):
"""
Lancaster Stemmer
>>> from nltk.stem.lancaster import LancasterStemmer
>>> st = LancasterStemmer()
>>> st.stem('maximum') # Remove "-um" when word is intact
'maxim'
>>> st.stem('presumably') # Don't remove "-um" when word is not intact
'presum'
>>> st.stem('multiply') # No action taken if word ends with "-ply"
'multiply'
>>> st.stem('provision') # Replace "-sion" with "-j" to trigger "j" set of rules
'provid'
>>> st.stem('owed') # Word starting with vowel must contain at least 2 letters
'ow'
>>> st.stem('ear') # ditto
'ear'
>>> st.stem('saying') # Words starting with consonant must contain at least 3
'say'
>>> st.stem('crying') # letters and one of those letters must be a vowel
'cry'
>>> st.stem('string') # ditto
'string'
>>> st.stem('meant') # ditto
'meant'
>>> st.stem('cement') # ditto
'cem'
>>> st_pre = LancasterStemmer(strip_prefix_flag=True)
>>> st_pre.stem('kilometer') # Test Prefix
'met'
>>> st_custom = LancasterStemmer(rule_tuple=("ssen4>", "s1t."))
>>> st_custom.stem("ness") # Change s to t
'nest'
"""
# The rule list is static since it doesn't change between instances
default_rule_tuple = (
"ai*2.", # -ia > - if intact
"a*1.", # -a > - if intact
"bb1.", # -bb > -b
"city3s.", # -ytic > -ys
"ci2>", # -ic > -
"cn1t>", # -nc > -nt
"dd1.", # -dd > -d
"dei3y>", # -ied > -y
"deec2ss.", # -ceed >", -cess
"dee1.", # -eed > -ee
"de2>", # -ed > -
"dooh4>", # -hood > -
"e1>", # -e > -
"feil1v.", # -lief > -liev
"fi2>", # -if > -
"gni3>", # -ing > -
"gai3y.", # -iag > -y
"ga2>", # -ag > -
"gg1.", # -gg > -g
"ht*2.", # -th > - if intact
"hsiug5ct.", # -guish > -ct
"hsi3>", # -ish > -
"i*1.", # -i > - if intact
"i1y>", # -i > -y
"ji1d.", # -ij > -id -- see nois4j> & vis3j>
"juf1s.", # -fuj > -fus
"ju1d.", # -uj > -ud
"jo1d.", # -oj > -od
"jeh1r.", # -hej > -her
"jrev1t.", # -verj > -vert
"jsim2t.", # -misj > -mit
"jn1d.", # -nj > -nd
"j1s.", # -j > -s
"lbaifi6.", # -ifiabl > -
"lbai4y.", # -iabl > -y
"lba3>", # -abl > -
"lbi3.", # -ibl > -
"lib2l>", # -bil > -bl
"lc1.", # -cl > c
"lufi4y.", # -iful > -y
"luf3>", # -ful > -
"lu2.", # -ul > -
"lai3>", # -ial > -
"lau3>", # -ual > -
"la2>", # -al > -
"ll1.", # -ll > -l
"mui3.", # -ium > -
"mu*2.", # -um > - if intact
"msi3>", # -ism > -
"mm1.", # -mm > -m
"nois4j>", # -sion > -j
"noix4ct.", # -xion > -ct
"noi3>", # -ion > -
"nai3>", # -ian > -
"na2>", # -an > -
"nee0.", # protect -een
"ne2>", # -en > -
"nn1.", # -nn > -n
"pihs4>", # -ship > -
"pp1.", # -pp > -p
"re2>", # -er > -
"rae0.", # protect -ear
"ra2.", # -ar > -
"ro2>", # -or > -
"ru2>", # -ur > -
"rr1.", # -rr > -r
"rt1>", # -tr > -t
"rei3y>", # -ier > -y
"sei3y>", # -ies > -y
"sis2.", # -sis > -s
"si2>", # -is > -
"ssen4>", # -ness > -
"ss0.", # protect -ss
"suo3>", # -ous > -
"su*2.", # -us > - if intact
"s*1>", # -s > - if intact
"s0.", # -s > -s
"tacilp4y.", # -plicat > -ply
"ta2>", # -at > -
"tnem4>", # -ment > -
"tne3>", # -ent > -
"tna3>", # -ant > -
"tpir2b.", # -ript > -rib
"tpro2b.", # -orpt > -orb
"tcud1.", # -duct > -duc
"tpmus2.", # -sumpt > -sum
"tpec2iv.", # -cept > -ceiv
"tulo2v.", # -olut > -olv
"tsis0.", # protect -sist
"tsi3>", # -ist > -
"tt1.", # -tt > -t
"uqi3.", # -iqu > -
"ugo1.", # -ogu > -og
"vis3j>", # -siv > -j
"vie0.", # protect -eiv
"vi2>", # -iv > -
"ylb1>", # -bly > -bl
"yli3y>", # -ily > -y
"ylp0.", # protect -ply
"yl2>", # -ly > -
"ygo1.", # -ogy > -og
"yhp1.", # -phy > -ph
"ymo1.", # -omy > -om
"ypo1.", # -opy > -op
"yti3>", # -ity > -
"yte3>", # -ety > -
"ytl2.", # -lty > -l
"yrtsi5.", # -istry > -
"yra3>", # -ary > -
"yro3>", # -ory > -
"yfi3.", # -ify > -
"ycn2t>", # -ncy > -nt
"yca3>", # -acy > -
"zi2>", # -iz > -
"zy1s.", # -yz > -ys
)
def __init__(self, rule_tuple=None, strip_prefix_flag=False):
"""Create an instance of the Lancaster stemmer."""
# Setup an empty rule dictionary - this will be filled in later
self.rule_dictionary = {}
# Check if a user wants to strip prefix
self._strip_prefix = strip_prefix_flag
# Check if a user wants to use his/her own rule tuples.
self._rule_tuple = rule_tuple if rule_tuple else self.default_rule_tuple
def parseRules(self, rule_tuple=None):
"""Validate the set of rules used in this stemmer.
If this function is called as an individual method, without using stem
method, rule_tuple argument will be compiled into self.rule_dictionary.
If this function is called within stem, self._rule_tuple will be used.
"""
# If there is no argument for the function, use class' own rule tuple.
rule_tuple = rule_tuple if rule_tuple else self._rule_tuple
valid_rule = re.compile(r"^[a-z]+\*?\d[a-z]*[>\.]?$")
# Empty any old rules from the rule set before adding new ones
self.rule_dictionary = {}
for rule in rule_tuple:
if not valid_rule.match(rule):
raise ValueError(f"The rule {rule} is invalid")
first_letter = rule[0:1]
if first_letter in self.rule_dictionary:
self.rule_dictionary[first_letter].append(rule)
else:
self.rule_dictionary[first_letter] = [rule]
def stem(self, word):
"""Stem a word using the Lancaster stemmer."""
# Lower-case the word, since all the rules are lower-cased
word = word.lower()
word = self.__stripPrefix(word) if self._strip_prefix else word
# Save a copy of the original word
intact_word = word
# If rule dictionary is empty, parse rule tuple.
if not self.rule_dictionary:
self.parseRules()
return self.__doStemming(word, intact_word)
def __doStemming(self, word, intact_word):
"""Perform the actual word stemming"""
valid_rule = re.compile(r"^([a-z]+)(\*?)(\d)([a-z]*)([>\.]?)$")
proceed = True
while proceed:
# Find the position of the last letter of the word to be stemmed
last_letter_position = self.__getLastLetter(word)
# Only stem the word if it has a last letter and a rule matching that last letter
if (
last_letter_position < 0
or word[last_letter_position] not in self.rule_dictionary
):
proceed = False
else:
rule_was_applied = False
# Go through each rule that matches the word's final letter
for rule in self.rule_dictionary[word[last_letter_position]]:
rule_match = valid_rule.match(rule)
if rule_match:
(
ending_string,
intact_flag,
remove_total,
append_string,
cont_flag,
) = rule_match.groups()
# Convert the number of chars to remove when stemming
# from a string to an integer
remove_total = int(remove_total)
# Proceed if word's ending matches rule's word ending
if word.endswith(ending_string[::-1]):
if intact_flag:
if word == intact_word and self.__isAcceptable(
word, remove_total
):
word = self.__applyRule(
word, remove_total, append_string
)
rule_was_applied = True
if cont_flag == ".":
proceed = False
break
elif self.__isAcceptable(word, remove_total):
word = self.__applyRule(
word, remove_total, append_string
)
rule_was_applied = True
if cont_flag == ".":
proceed = False
break
# If no rules apply, the word doesn't need any more stemming
if rule_was_applied == False:
proceed = False
return word
def __getLastLetter(self, word):
"""Get the zero-based index of the last alphabetic character in this string"""
last_letter = -1
for position in range(len(word)):
if word[position].isalpha():
last_letter = position
else:
break
return last_letter
def __isAcceptable(self, word, remove_total):
"""Determine if the word is acceptable for stemming."""
word_is_acceptable = False
# If the word starts with a vowel, it must be at least 2
# characters long to be stemmed
if word[0] in "aeiouy":
if len(word) - remove_total >= 2:
word_is_acceptable = True
# If the word starts with a consonant, it must be at least 3
# characters long (including one vowel) to be stemmed
elif len(word) - remove_total >= 3:
if word[1] in "aeiouy":
word_is_acceptable = True
elif word[2] in "aeiouy":
word_is_acceptable = True
return word_is_acceptable
def __applyRule(self, word, remove_total, append_string):
"""Apply the stemming rule to the word"""
# Remove letters from the end of the word
new_word_length = len(word) - remove_total
word = word[0:new_word_length]
# And add new letters to the end of the truncated word
if append_string:
word += append_string
return word
def __stripPrefix(self, word):
"""Remove prefix from a word.
This function originally taken from Whoosh.
"""
for prefix in (
"kilo",
"micro",
"milli",
"intra",
"ultra",
"mega",
"nano",
"pico",
"pseudo",
):
if word.startswith(prefix):
return word[len(prefix) :]
return word
def __repr__(self):
return "<LancasterStemmer>"

View File

@@ -0,0 +1,717 @@
"""
Porter Stemmer
This is the Porter stemming algorithm. It follows the algorithm
presented in
Porter, M. "An algorithm for suffix stripping." Program 14.3 (1980): 130-137.
with some optional deviations that can be turned on or off with the
`mode` argument to the constructor.
Martin Porter, the algorithm's inventor, maintains a web page about the
algorithm at
https://www.tartarus.org/~martin/PorterStemmer/
which includes another Python implementation and other implementations
in many languages.
"""
__docformat__ = "plaintext"
import re
from nltk.stem.api import StemmerI
class PorterStemmer(StemmerI):
"""
A word stemmer based on the Porter stemming algorithm.
Porter, M. "An algorithm for suffix stripping."
Program 14.3 (1980): 130-137.
See https://www.tartarus.org/~martin/PorterStemmer/ for the homepage
of the algorithm.
Martin Porter has endorsed several modifications to the Porter
algorithm since writing his original paper, and those extensions are
included in the implementations on his website. Additionally, others
have proposed further improvements to the algorithm, including NLTK
contributors. There are thus three modes that can be selected by
passing the appropriate constant to the class constructor's `mode`
attribute:
- PorterStemmer.ORIGINAL_ALGORITHM
An implementation that is faithful to the original paper.
Note that Martin Porter has deprecated this version of the
algorithm. Martin distributes implementations of the Porter
Stemmer in many languages, hosted at:
https://www.tartarus.org/~martin/PorterStemmer/
and all of these implementations include his extensions. He
strongly recommends against using the original, published
version of the algorithm; only use this mode if you clearly
understand why you are choosing to do so.
- PorterStemmer.MARTIN_EXTENSIONS
An implementation that only uses the modifications to the
algorithm that are included in the implementations on Martin
Porter's website. He has declared Porter frozen, so the
behaviour of those implementations should never change.
- PorterStemmer.NLTK_EXTENSIONS (default)
An implementation that includes further improvements devised by
NLTK contributors or taken from other modified implementations
found on the web.
For the best stemming, you should use the default NLTK_EXTENSIONS
version. However, if you need to get the same results as either the
original algorithm or one of Martin Porter's hosted versions for
compatibility with an existing implementation or dataset, you can use
one of the other modes instead.
"""
# Modes the Stemmer can be instantiated in
NLTK_EXTENSIONS = "NLTK_EXTENSIONS"
MARTIN_EXTENSIONS = "MARTIN_EXTENSIONS"
ORIGINAL_ALGORITHM = "ORIGINAL_ALGORITHM"
def __init__(self, mode=NLTK_EXTENSIONS):
if mode not in (
self.NLTK_EXTENSIONS,
self.MARTIN_EXTENSIONS,
self.ORIGINAL_ALGORITHM,
):
raise ValueError(
"Mode must be one of PorterStemmer.NLTK_EXTENSIONS, "
"PorterStemmer.MARTIN_EXTENSIONS, or "
"PorterStemmer.ORIGINAL_ALGORITHM"
)
self.mode = mode
if self.mode == self.NLTK_EXTENSIONS:
# This is a table of irregular forms. It is quite short,
# but still reflects the errors actually drawn to Martin
# Porter's attention over a 20 year period!
irregular_forms = {
"sky": ["sky", "skies"],
"die": ["dying"],
"lie": ["lying"],
"tie": ["tying"],
"news": ["news"],
"inning": ["innings", "inning"],
"outing": ["outings", "outing"],
"canning": ["cannings", "canning"],
"howe": ["howe"],
"proceed": ["proceed"],
"exceed": ["exceed"],
"succeed": ["succeed"],
}
self.pool = {}
for key in irregular_forms:
for val in irregular_forms[key]:
self.pool[val] = key
self.vowels = frozenset(["a", "e", "i", "o", "u"])
def _is_consonant(self, word, i):
"""Returns True if word[i] is a consonant, False otherwise
A consonant is defined in the paper as follows:
A consonant in a word is a letter other than A, E, I, O or
U, and other than Y preceded by a consonant. (The fact that
the term `consonant' is defined to some extent in terms of
itself does not make it ambiguous.) So in TOY the consonants
are T and Y, and in SYZYGY they are S, Z and G. If a letter
is not a consonant it is a vowel.
"""
if word[i] in self.vowels:
return False
if word[i] == "y":
if i == 0:
return True
else:
return not self._is_consonant(word, i - 1)
return True
def _measure(self, stem):
r"""Returns the 'measure' of stem, per definition in the paper
From the paper:
A consonant will be denoted by c, a vowel by v. A list
ccc... of length greater than 0 will be denoted by C, and a
list vvv... of length greater than 0 will be denoted by V.
Any word, or part of a word, therefore has one of the four
forms:
CVCV ... C
CVCV ... V
VCVC ... C
VCVC ... V
These may all be represented by the single form
[C]VCVC ... [V]
where the square brackets denote arbitrary presence of their
contents. Using (VC){m} to denote VC repeated m times, this
may again be written as
[C](VC){m}[V].
m will be called the \measure\ of any word or word part when
represented in this form. The case m = 0 covers the null
word. Here are some examples:
m=0 TR, EE, TREE, Y, BY.
m=1 TROUBLE, OATS, TREES, IVY.
m=2 TROUBLES, PRIVATE, OATEN, ORRERY.
"""
cv_sequence = ""
# Construct a string of 'c's and 'v's representing whether each
# character in `stem` is a consonant or a vowel.
# e.g. 'falafel' becomes 'cvcvcvc',
# 'architecture' becomes 'vcccvcvccvcv'
for i in range(len(stem)):
if self._is_consonant(stem, i):
cv_sequence += "c"
else:
cv_sequence += "v"
# Count the number of 'vc' occurrences, which is equivalent to
# the number of 'VC' occurrences in Porter's reduced form in the
# docstring above, which is in turn equivalent to `m`
return cv_sequence.count("vc")
def _has_positive_measure(self, stem):
return self._measure(stem) > 0
def _contains_vowel(self, stem):
"""Returns True if stem contains a vowel, else False"""
for i in range(len(stem)):
if not self._is_consonant(stem, i):
return True
return False
def _ends_double_consonant(self, word):
"""Implements condition *d from the paper
Returns True if word ends with a double consonant
"""
return (
len(word) >= 2
and word[-1] == word[-2]
and self._is_consonant(word, len(word) - 1)
)
def _ends_cvc(self, word):
"""Implements condition *o from the paper
From the paper:
*o - the stem ends cvc, where the second c is not W, X or Y
(e.g. -WIL, -HOP).
"""
return (
len(word) >= 3
and self._is_consonant(word, len(word) - 3)
and not self._is_consonant(word, len(word) - 2)
and self._is_consonant(word, len(word) - 1)
and word[-1] not in ("w", "x", "y")
) or (
self.mode == self.NLTK_EXTENSIONS
and len(word) == 2
and not self._is_consonant(word, 0)
and self._is_consonant(word, 1)
)
def _replace_suffix(self, word, suffix, replacement):
"""Replaces `suffix` of `word` with `replacement"""
assert word.endswith(suffix), "Given word doesn't end with given suffix"
if suffix == "":
return word + replacement
else:
return word[: -len(suffix)] + replacement
def _apply_rule_list(self, word, rules):
"""Applies the first applicable suffix-removal rule to the word
Takes a word and a list of suffix-removal rules represented as
3-tuples, with the first element being the suffix to remove,
the second element being the string to replace it with, and the
final element being the condition for the rule to be applicable,
or None if the rule is unconditional.
"""
for rule in rules:
suffix, replacement, condition = rule
if suffix == "*d" and self._ends_double_consonant(word):
stem = word[:-2]
if condition is None or condition(stem):
return stem + replacement
else:
# Don't try any further rules
return word
if word.endswith(suffix):
stem = self._replace_suffix(word, suffix, "")
if condition is None or condition(stem):
return stem + replacement
else:
# Don't try any further rules
return word
return word
def _step1a(self, word):
"""Implements Step 1a from "An algorithm for suffix stripping"
From the paper:
SSES -> SS caresses -> caress
IES -> I ponies -> poni
ties -> ti
SS -> SS caress -> caress
S -> cats -> cat
"""
# this NLTK-only rule extends the original algorithm, so
# that 'flies'->'fli' but 'dies'->'die' etc
if self.mode == self.NLTK_EXTENSIONS:
if word.endswith("ies") and len(word) == 4:
return self._replace_suffix(word, "ies", "ie")
return self._apply_rule_list(
word,
[
("sses", "ss", None), # SSES -> SS
("ies", "i", None), # IES -> I
("ss", "ss", None), # SS -> SS
("s", "", None), # S ->
],
)
def _step1b(self, word):
"""Implements Step 1b from "An algorithm for suffix stripping"
From the paper:
(m>0) EED -> EE feed -> feed
agreed -> agree
(*v*) ED -> plastered -> plaster
bled -> bled
(*v*) ING -> motoring -> motor
sing -> sing
If the second or third of the rules in Step 1b is successful,
the following is done:
AT -> ATE conflat(ed) -> conflate
BL -> BLE troubl(ed) -> trouble
IZ -> IZE siz(ed) -> size
(*d and not (*L or *S or *Z))
-> single letter
hopp(ing) -> hop
tann(ed) -> tan
fall(ing) -> fall
hiss(ing) -> hiss
fizz(ed) -> fizz
(m=1 and *o) -> E fail(ing) -> fail
fil(ing) -> file
The rule to map to a single letter causes the removal of one of
the double letter pair. The -E is put back on -AT, -BL and -IZ,
so that the suffixes -ATE, -BLE and -IZE can be recognised
later. This E may be removed in step 4.
"""
# this NLTK-only block extends the original algorithm, so that
# 'spied'->'spi' but 'died'->'die' etc
if self.mode == self.NLTK_EXTENSIONS:
if word.endswith("ied"):
if len(word) == 4:
return self._replace_suffix(word, "ied", "ie")
else:
return self._replace_suffix(word, "ied", "i")
# (m>0) EED -> EE
if word.endswith("eed"):
stem = self._replace_suffix(word, "eed", "")
if self._measure(stem) > 0:
return stem + "ee"
else:
return word
rule_2_or_3_succeeded = False
for suffix in ["ed", "ing"]:
if word.endswith(suffix):
intermediate_stem = self._replace_suffix(word, suffix, "")
if self._contains_vowel(intermediate_stem):
rule_2_or_3_succeeded = True
break
if not rule_2_or_3_succeeded:
return word
return self._apply_rule_list(
intermediate_stem,
[
("at", "ate", None), # AT -> ATE
("bl", "ble", None), # BL -> BLE
("iz", "ize", None), # IZ -> IZE
# (*d and not (*L or *S or *Z))
# -> single letter
(
"*d",
intermediate_stem[-1],
lambda stem: intermediate_stem[-1] not in ("l", "s", "z"),
),
# (m=1 and *o) -> E
(
"",
"e",
lambda stem: (self._measure(stem) == 1 and self._ends_cvc(stem)),
),
],
)
def _step1c(self, word):
"""Implements Step 1c from "An algorithm for suffix stripping"
From the paper:
Step 1c
(*v*) Y -> I happy -> happi
sky -> sky
"""
def nltk_condition(stem):
"""
This has been modified from the original Porter algorithm so
that y->i is only done when y is preceded by a consonant,
but not if the stem is only a single consonant, i.e.
(*c and not c) Y -> I
So 'happy' -> 'happi', but
'enjoy' -> 'enjoy' etc
This is a much better rule. Formerly 'enjoy'->'enjoi' and
'enjoyment'->'enjoy'. Step 1c is perhaps done too soon; but
with this modification that no longer really matters.
Also, the removal of the contains_vowel(z) condition means
that 'spy', 'fly', 'try' ... stem to 'spi', 'fli', 'tri' and
conflate with 'spied', 'tried', 'flies' ...
"""
return len(stem) > 1 and self._is_consonant(stem, len(stem) - 1)
def original_condition(stem):
return self._contains_vowel(stem)
return self._apply_rule_list(
word,
[
(
"y",
"i",
(
nltk_condition
if self.mode == self.NLTK_EXTENSIONS
else original_condition
),
)
],
)
def _step2(self, word):
"""Implements Step 2 from "An algorithm for suffix stripping"
From the paper:
Step 2
(m>0) ATIONAL -> ATE relational -> relate
(m>0) TIONAL -> TION conditional -> condition
rational -> rational
(m>0) ENCI -> ENCE valenci -> valence
(m>0) ANCI -> ANCE hesitanci -> hesitance
(m>0) IZER -> IZE digitizer -> digitize
(m>0) ABLI -> ABLE conformabli -> conformable
(m>0) ALLI -> AL radicalli -> radical
(m>0) ENTLI -> ENT differentli -> different
(m>0) ELI -> E vileli - > vile
(m>0) OUSLI -> OUS analogousli -> analogous
(m>0) IZATION -> IZE vietnamization -> vietnamize
(m>0) ATION -> ATE predication -> predicate
(m>0) ATOR -> ATE operator -> operate
(m>0) ALISM -> AL feudalism -> feudal
(m>0) IVENESS -> IVE decisiveness -> decisive
(m>0) FULNESS -> FUL hopefulness -> hopeful
(m>0) OUSNESS -> OUS callousness -> callous
(m>0) ALITI -> AL formaliti -> formal
(m>0) IVITI -> IVE sensitiviti -> sensitive
(m>0) BILITI -> BLE sensibiliti -> sensible
"""
if self.mode == self.NLTK_EXTENSIONS:
# Instead of applying the ALLI -> AL rule after '(a)bli' per
# the published algorithm, instead we apply it first, and,
# if it succeeds, run the result through step2 again.
if word.endswith("alli") and self._has_positive_measure(
self._replace_suffix(word, "alli", "")
):
return self._step2(self._replace_suffix(word, "alli", "al"))
bli_rule = ("bli", "ble", self._has_positive_measure)
abli_rule = ("abli", "able", self._has_positive_measure)
rules = [
("ational", "ate", self._has_positive_measure),
("tional", "tion", self._has_positive_measure),
("enci", "ence", self._has_positive_measure),
("anci", "ance", self._has_positive_measure),
("izer", "ize", self._has_positive_measure),
abli_rule if self.mode == self.ORIGINAL_ALGORITHM else bli_rule,
("alli", "al", self._has_positive_measure),
("entli", "ent", self._has_positive_measure),
("eli", "e", self._has_positive_measure),
("ousli", "ous", self._has_positive_measure),
("ization", "ize", self._has_positive_measure),
("ation", "ate", self._has_positive_measure),
("ator", "ate", self._has_positive_measure),
("alism", "al", self._has_positive_measure),
("iveness", "ive", self._has_positive_measure),
("fulness", "ful", self._has_positive_measure),
("ousness", "ous", self._has_positive_measure),
("aliti", "al", self._has_positive_measure),
("iviti", "ive", self._has_positive_measure),
("biliti", "ble", self._has_positive_measure),
]
if self.mode == self.NLTK_EXTENSIONS:
rules.append(("fulli", "ful", self._has_positive_measure))
# The 'l' of the 'logi' -> 'log' rule is put with the stem,
# so that short stems like 'geo' 'theo' etc work like
# 'archaeo' 'philo' etc.
rules.append(
("logi", "log", lambda stem: self._has_positive_measure(word[:-3]))
)
if self.mode == self.MARTIN_EXTENSIONS:
rules.append(("logi", "log", self._has_positive_measure))
return self._apply_rule_list(word, rules)
def _step3(self, word):
"""Implements Step 3 from "An algorithm for suffix stripping"
From the paper:
Step 3
(m>0) ICATE -> IC triplicate -> triplic
(m>0) ATIVE -> formative -> form
(m>0) ALIZE -> AL formalize -> formal
(m>0) ICITI -> IC electriciti -> electric
(m>0) ICAL -> IC electrical -> electric
(m>0) FUL -> hopeful -> hope
(m>0) NESS -> goodness -> good
"""
return self._apply_rule_list(
word,
[
("icate", "ic", self._has_positive_measure),
("ative", "", self._has_positive_measure),
("alize", "al", self._has_positive_measure),
("iciti", "ic", self._has_positive_measure),
("ical", "ic", self._has_positive_measure),
("ful", "", self._has_positive_measure),
("ness", "", self._has_positive_measure),
],
)
def _step4(self, word):
"""Implements Step 4 from "An algorithm for suffix stripping"
Step 4
(m>1) AL -> revival -> reviv
(m>1) ANCE -> allowance -> allow
(m>1) ENCE -> inference -> infer
(m>1) ER -> airliner -> airlin
(m>1) IC -> gyroscopic -> gyroscop
(m>1) ABLE -> adjustable -> adjust
(m>1) IBLE -> defensible -> defens
(m>1) ANT -> irritant -> irrit
(m>1) EMENT -> replacement -> replac
(m>1) MENT -> adjustment -> adjust
(m>1) ENT -> dependent -> depend
(m>1 and (*S or *T)) ION -> adoption -> adopt
(m>1) OU -> homologou -> homolog
(m>1) ISM -> communism -> commun
(m>1) ATE -> activate -> activ
(m>1) ITI -> angulariti -> angular
(m>1) OUS -> homologous -> homolog
(m>1) IVE -> effective -> effect
(m>1) IZE -> bowdlerize -> bowdler
The suffixes are now removed. All that remains is a little
tidying up.
"""
measure_gt_1 = lambda stem: self._measure(stem) > 1
return self._apply_rule_list(
word,
[
("al", "", measure_gt_1),
("ance", "", measure_gt_1),
("ence", "", measure_gt_1),
("er", "", measure_gt_1),
("ic", "", measure_gt_1),
("able", "", measure_gt_1),
("ible", "", measure_gt_1),
("ant", "", measure_gt_1),
("ement", "", measure_gt_1),
("ment", "", measure_gt_1),
("ent", "", measure_gt_1),
# (m>1 and (*S or *T)) ION ->
(
"ion",
"",
lambda stem: self._measure(stem) > 1 and stem[-1] in ("s", "t"),
),
("ou", "", measure_gt_1),
("ism", "", measure_gt_1),
("ate", "", measure_gt_1),
("iti", "", measure_gt_1),
("ous", "", measure_gt_1),
("ive", "", measure_gt_1),
("ize", "", measure_gt_1),
],
)
def _step5a(self, word):
"""Implements Step 5a from "An algorithm for suffix stripping"
From the paper:
Step 5a
(m>1) E -> probate -> probat
rate -> rate
(m=1 and not *o) E -> cease -> ceas
"""
# Note that Martin's test vocabulary and reference
# implementations are inconsistent in how they handle the case
# where two rules both refer to a suffix that matches the word
# to be stemmed, but only the condition of the second one is
# true.
# Earlier in step2b we had the rules:
# (m>0) EED -> EE
# (*v*) ED ->
# but the examples in the paper included "feed"->"feed", even
# though (*v*) is true for "fe" and therefore the second rule
# alone would map "feed"->"fe".
# However, in THIS case, we need to handle the consecutive rules
# differently and try both conditions (obviously; the second
# rule here would be redundant otherwise). Martin's paper makes
# no explicit mention of the inconsistency; you have to infer it
# from the examples.
# For this reason, we can't use _apply_rule_list here.
if word.endswith("e"):
stem = self._replace_suffix(word, "e", "")
if self._measure(stem) > 1:
return stem
if self._measure(stem) == 1 and not self._ends_cvc(stem):
return stem
return word
def _step5b(self, word):
"""Implements Step 5a from "An algorithm for suffix stripping"
From the paper:
Step 5b
(m > 1 and *d and *L) -> single letter
controll -> control
roll -> roll
"""
return self._apply_rule_list(
word, [("ll", "l", lambda stem: self._measure(word[:-1]) > 1)]
)
def stem(self, word, to_lowercase=True):
"""
:param to_lowercase: if `to_lowercase=True` the word always lowercase
"""
stem = word.lower() if to_lowercase else word
if self.mode == self.NLTK_EXTENSIONS and word in self.pool:
return self.pool[stem]
if self.mode != self.ORIGINAL_ALGORITHM and len(word) <= 2:
# With this line, strings of length 1 or 2 don't go through
# the stemming process, although no mention is made of this
# in the published algorithm.
return stem
stem = self._step1a(stem)
stem = self._step1b(stem)
stem = self._step1c(stem)
stem = self._step2(stem)
stem = self._step3(stem)
stem = self._step4(stem)
stem = self._step5a(stem)
stem = self._step5b(stem)
return stem
def __repr__(self):
return "<PorterStemmer>"
def demo():
"""
A demonstration of the porter stemmer on a sample from
the Penn Treebank corpus.
"""
from nltk import stem
from nltk.corpus import treebank
stemmer = stem.PorterStemmer()
orig = []
stemmed = []
for item in treebank.fileids()[:3]:
for word, tag in treebank.tagged_words(item):
orig.append(word)
stemmed.append(stemmer.stem(word))
# Convert the results to a string, and word-wrap them.
results = " ".join(stemmed)
results = re.sub(r"(.{,70})\s", r"\1\n", results + " ").rstrip()
# Convert the original to a string, and word wrap it.
original = " ".join(orig)
original = re.sub(r"(.{,70})\s", r"\1\n", original + " ").rstrip()
# Print the results.
print("-Original-".center(70).replace(" ", "*").replace("-", " "))
print(original)
print("-Results-".center(70).replace(" ", "*").replace("-", " "))
print(results)
print("*" * 70)

View File

@@ -0,0 +1,55 @@
# Natural Language Toolkit: Stemmers
#
# Copyright (C) 2001-2025 NLTK Project
# Author: Trevor Cohn <tacohn@cs.mu.oz.au>
# Edward Loper <edloper@gmail.com>
# Steven Bird <stevenbird1@gmail.com>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
import re
from nltk.stem.api import StemmerI
class RegexpStemmer(StemmerI):
"""
A stemmer that uses regular expressions to identify morphological
affixes. Any substrings that match the regular expressions will
be removed.
>>> from nltk.stem import RegexpStemmer
>>> st = RegexpStemmer('ing$|s$|e$|able$', min=4)
>>> st.stem('cars')
'car'
>>> st.stem('mass')
'mas'
>>> st.stem('was')
'was'
>>> st.stem('bee')
'bee'
>>> st.stem('compute')
'comput'
>>> st.stem('advisable')
'advis'
:type regexp: str or regexp
:param regexp: The regular expression that should be used to
identify morphological affixes.
:type min: int
:param min: The minimum length of string to stem
"""
def __init__(self, regexp, min=0):
if not hasattr(regexp, "pattern"):
regexp = re.compile(regexp)
self._regexp = regexp
self._min = min
def stem(self, word):
if len(word) < self._min:
return word
else:
return self._regexp.sub("", word)
def __repr__(self):
return f"<RegexpStemmer: {self._regexp.pattern!r}>"

View File

@@ -0,0 +1,137 @@
# Natural Language Toolkit: RSLP Stemmer
#
# Copyright (C) 2001-2025 NLTK Project
# Author: Tiago Tresoldi <tresoldi@gmail.com>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
# This code is based on the algorithm presented in the paper "A Stemming
# Algorithm for the Portuguese Language" by Viviane Moreira Orengo and
# Christian Huyck, which unfortunately I had no access to. The code is a
# Python version, with some minor modifications of mine, to the description
# presented at https://www.webcitation.org/5NnvdIzOb and to the C source code
# available at http://www.inf.ufrgs.br/~arcoelho/rslp/integrando_rslp.html.
# Please note that this stemmer is intended for demonstration and educational
# purposes only. Feel free to write me for any comments, including the
# development of a different and/or better stemmer for Portuguese. I also
# suggest using NLTK's mailing list for Portuguese for any discussion.
# Este código é baseado no algoritmo apresentado no artigo "A Stemming
# Algorithm for the Portuguese Language" de Viviane Moreira Orengo e
# Christian Huyck, o qual infelizmente não tive a oportunidade de ler. O
# código é uma conversão para Python, com algumas pequenas modificações
# minhas, daquele apresentado em https://www.webcitation.org/5NnvdIzOb e do
# código para linguagem C disponível em
# http://www.inf.ufrgs.br/~arcoelho/rslp/integrando_rslp.html. Por favor,
# lembre-se de que este stemmer foi desenvolvido com finalidades unicamente
# de demonstração e didáticas. Sinta-se livre para me escrever para qualquer
# comentário, inclusive sobre o desenvolvimento de um stemmer diferente
# e/ou melhor para o português. Também sugiro utilizar-se a lista de discussão
# do NLTK para o português para qualquer debate.
from nltk.data import load
from nltk.stem.api import StemmerI
class RSLPStemmer(StemmerI):
"""
A stemmer for Portuguese.
>>> from nltk.stem import RSLPStemmer
>>> st = RSLPStemmer()
>>> # opening lines of Erico Verissimo's "Música ao Longe"
>>> text = '''
... Clarissa risca com giz no quadro-negro a paisagem que os alunos
... devem copiar . Uma casinha de porta e janela , em cima duma
... coxilha .'''
>>> for token in text.split(): # doctest: +NORMALIZE_WHITESPACE
... print(st.stem(token))
clariss risc com giz no quadro-negr a pais que os alun dev copi .
uma cas de port e janel , em cim dum coxilh .
"""
def __init__(self):
self._model = []
self._model.append(self.read_rule("step0.pt"))
self._model.append(self.read_rule("step1.pt"))
self._model.append(self.read_rule("step2.pt"))
self._model.append(self.read_rule("step3.pt"))
self._model.append(self.read_rule("step4.pt"))
self._model.append(self.read_rule("step5.pt"))
self._model.append(self.read_rule("step6.pt"))
def read_rule(self, filename):
rules = load("nltk:stemmers/rslp/" + filename, format="raw").decode("utf8")
lines = rules.split("\n")
lines = [line for line in lines if line != ""] # remove blank lines
lines = [line for line in lines if line[0] != "#"] # remove comments
# NOTE: a simple but ugly hack to make this parser happy with double '\t's
lines = [line.replace("\t\t", "\t") for line in lines]
# parse rules
rules = []
for line in lines:
rule = []
tokens = line.split("\t")
# text to be searched for at the end of the string
rule.append(tokens[0][1:-1]) # remove quotes
# minimum stem size to perform the replacement
rule.append(int(tokens[1]))
# text to be replaced into
rule.append(tokens[2][1:-1]) # remove quotes
# exceptions to this rule
rule.append([token[1:-1] for token in tokens[3].split(",")])
# append to the results
rules.append(rule)
return rules
def stem(self, word):
word = word.lower()
# the word ends in 's'? apply rule for plural reduction
if word[-1] == "s":
word = self.apply_rule(word, 0)
# the word ends in 'a'? apply rule for feminine reduction
if word[-1] == "a":
word = self.apply_rule(word, 1)
# augmentative reduction
word = self.apply_rule(word, 3)
# adverb reduction
word = self.apply_rule(word, 2)
# noun reduction
prev_word = word
word = self.apply_rule(word, 4)
if word == prev_word:
# verb reduction
prev_word = word
word = self.apply_rule(word, 5)
if word == prev_word:
# vowel removal
word = self.apply_rule(word, 6)
return word
def apply_rule(self, word, rule_index):
rules = self._model[rule_index]
for rule in rules:
suffix_length = len(rule[0])
if word[-suffix_length:] == rule[0]: # if suffix matches
if len(word) >= suffix_length + rule[1]: # if we have minimum size
if word not in rule[3]: # if not an exception
word = word[:-suffix_length] + rule[2]
break
return word

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,25 @@
# Natural Language Toolkit: Stemmer Utilities
#
# Copyright (C) 2001-2025 NLTK Project
# Author: Helder <he7d3r@gmail.com>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
def suffix_replace(original, old, new):
"""
Replaces the old suffix of the original string by a new suffix
"""
return original[: -len(old)] + new
def prefix_replace(original, old, new):
"""
Replaces the old prefix of the original string by a new suffix
:param original: string
:param old: string
:param new: string
:return: string
"""
return new + original[len(old) :]

View File

@@ -0,0 +1,89 @@
# Natural Language Toolkit: WordNet stemmer interface
#
# Copyright (C) 2001-2025 NLTK Project
# Author: Steven Bird <stevenbird1@gmail.com>
# Edward Loper <edloper@gmail.com>
# Eric Kafe <kafe.eric@gmail.com>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
class WordNetLemmatizer:
"""
WordNet Lemmatizer
Provides 3 lemmatizer modes: _morphy(), morphy() and lemmatize().
lemmatize() is a permissive wrapper around _morphy().
It returns the shortest lemma found in WordNet,
or the input string unchanged if nothing is found.
>>> from nltk.stem import WordNetLemmatizer as wnl
>>> print(wnl().lemmatize('us', 'n'))
u
>>> print(wnl().lemmatize('Anythinggoeszxcv'))
Anythinggoeszxcv
"""
def _morphy(self, form, pos, check_exceptions=True):
"""
_morphy() is WordNet's _morphy lemmatizer.
It returns a list of all lemmas found in WordNet.
>>> from nltk.stem import WordNetLemmatizer as wnl
>>> print(wnl()._morphy('us', 'n'))
['us', 'u']
"""
from nltk.corpus import wordnet as wn
return wn._morphy(form, pos, check_exceptions)
def morphy(self, form, pos=None, check_exceptions=True):
"""
morphy() is a restrictive wrapper around _morphy().
It returns the first lemma found in WordNet,
or None if no lemma is found.
>>> from nltk.stem import WordNetLemmatizer as wnl
>>> print(wnl().morphy('us', 'n'))
us
>>> print(wnl().morphy('catss'))
None
"""
from nltk.corpus import wordnet as wn
return wn.morphy(form, pos, check_exceptions)
def lemmatize(self, word: str, pos: str = "n") -> str:
"""Lemmatize `word` by picking the shortest of the possible lemmas,
using the wordnet corpus reader's built-in _morphy function.
Returns the input word unchanged if it cannot be found in WordNet.
>>> from nltk.stem import WordNetLemmatizer as wnl
>>> print(wnl().lemmatize('dogs'))
dog
>>> print(wnl().lemmatize('churches'))
church
>>> print(wnl().lemmatize('aardwolves'))
aardwolf
>>> print(wnl().lemmatize('abaci'))
abacus
>>> print(wnl().lemmatize('hardrock'))
hardrock
:param word: The input word to lemmatize.
:type word: str
:param pos: The Part Of Speech tag. Valid options are `"n"` for nouns,
`"v"` for verbs, `"a"` for adjectives, `"r"` for adverbs and `"s"`
for satellite adjectives.
:type pos: str
:return: The shortest lemma of `word`, for the given `pos`.
"""
lemmas = self._morphy(word, pos)
return min(lemmas, key=len) if lemmas else word
def __repr__(self):
return "<WordNetLemmatizer>"