updates
This commit is contained in:
830
Backend/venv/lib/python3.12/site-packages/nltk/sem/evaluate.py
Normal file
830
Backend/venv/lib/python3.12/site-packages/nltk/sem/evaluate.py
Normal file
@@ -0,0 +1,830 @@
|
||||
# Natural Language Toolkit: Models for first-order languages with lambda
|
||||
#
|
||||
# Copyright (C) 2001-2025 NLTK Project
|
||||
# Author: Ewan Klein <ewan@inf.ed.ac.uk>,
|
||||
# URL: <https://www.nltk.org>
|
||||
# For license information, see LICENSE.TXT
|
||||
|
||||
# TODO:
|
||||
# - fix tracing
|
||||
# - fix iterator-based approach to existentials
|
||||
|
||||
"""
|
||||
This module provides data structures for representing first-order
|
||||
models.
|
||||
"""
|
||||
|
||||
import inspect
|
||||
import re
|
||||
import sys
|
||||
import textwrap
|
||||
from pprint import pformat
|
||||
|
||||
from nltk.decorators import decorator # this used in code that is commented out
|
||||
from nltk.sem.logic import (
|
||||
AbstractVariableExpression,
|
||||
AllExpression,
|
||||
AndExpression,
|
||||
ApplicationExpression,
|
||||
EqualityExpression,
|
||||
ExistsExpression,
|
||||
Expression,
|
||||
IffExpression,
|
||||
ImpExpression,
|
||||
IndividualVariableExpression,
|
||||
IotaExpression,
|
||||
LambdaExpression,
|
||||
NegatedExpression,
|
||||
OrExpression,
|
||||
Variable,
|
||||
is_indvar,
|
||||
)
|
||||
|
||||
|
||||
class Error(Exception):
|
||||
pass
|
||||
|
||||
|
||||
class Undefined(Error):
|
||||
pass
|
||||
|
||||
|
||||
def trace(f, *args, **kw):
|
||||
argspec = inspect.getfullargspec(f)
|
||||
d = dict(zip(argspec[0], args))
|
||||
if d.pop("trace", None):
|
||||
print()
|
||||
for item in d.items():
|
||||
print("%s => %s" % item)
|
||||
return f(*args, **kw)
|
||||
|
||||
|
||||
def is_rel(s):
|
||||
"""
|
||||
Check whether a set represents a relation (of any arity).
|
||||
|
||||
:param s: a set containing tuples of str elements
|
||||
:type s: set
|
||||
:rtype: bool
|
||||
"""
|
||||
# we have the empty relation, i.e. set()
|
||||
if len(s) == 0:
|
||||
return True
|
||||
# all the elements are tuples of the same length
|
||||
elif all(isinstance(el, tuple) for el in s) and len(max(s)) == len(min(s)):
|
||||
return True
|
||||
else:
|
||||
raise ValueError("Set %r contains sequences of different lengths" % s)
|
||||
|
||||
|
||||
def set2rel(s):
|
||||
"""
|
||||
Convert a set containing individuals (strings or numbers) into a set of
|
||||
unary tuples. Any tuples of strings already in the set are passed through
|
||||
unchanged.
|
||||
|
||||
For example:
|
||||
- set(['a', 'b']) => set([('a',), ('b',)])
|
||||
- set([3, 27]) => set([('3',), ('27',)])
|
||||
|
||||
:type s: set
|
||||
:rtype: set of tuple of str
|
||||
"""
|
||||
new = set()
|
||||
for elem in s:
|
||||
if isinstance(elem, str):
|
||||
new.add((elem,))
|
||||
elif isinstance(elem, int):
|
||||
new.add(str(elem))
|
||||
else:
|
||||
new.add(elem)
|
||||
return new
|
||||
|
||||
|
||||
def arity(rel):
|
||||
"""
|
||||
Check the arity of a relation.
|
||||
:type rel: set of tuples
|
||||
:rtype: int of tuple of str
|
||||
"""
|
||||
if len(rel) == 0:
|
||||
return 0
|
||||
return len(list(rel)[0])
|
||||
|
||||
|
||||
class Valuation(dict):
|
||||
"""
|
||||
A dictionary which represents a model-theoretic Valuation of non-logical constants.
|
||||
Keys are strings representing the constants to be interpreted, and values correspond
|
||||
to individuals (represented as strings) and n-ary relations (represented as sets of tuples
|
||||
of strings).
|
||||
|
||||
An instance of ``Valuation`` will raise a KeyError exception (i.e.,
|
||||
just behave like a standard dictionary) if indexed with an expression that
|
||||
is not in its list of symbols.
|
||||
"""
|
||||
|
||||
def __init__(self, xs):
|
||||
"""
|
||||
:param xs: a list of (symbol, value) pairs.
|
||||
"""
|
||||
super().__init__()
|
||||
for sym, val in xs:
|
||||
if isinstance(val, str) or isinstance(val, bool):
|
||||
self[sym] = val
|
||||
elif isinstance(val, set):
|
||||
self[sym] = set2rel(val)
|
||||
else:
|
||||
msg = textwrap.fill(
|
||||
"Error in initializing Valuation. "
|
||||
"Unrecognized value for symbol '%s':\n%s" % (sym, val),
|
||||
width=66,
|
||||
)
|
||||
|
||||
raise ValueError(msg)
|
||||
|
||||
def __getitem__(self, key):
|
||||
if key in self:
|
||||
return dict.__getitem__(self, key)
|
||||
else:
|
||||
raise Undefined("Unknown expression: '%s'" % key)
|
||||
|
||||
def __str__(self):
|
||||
return pformat(self)
|
||||
|
||||
@property
|
||||
def domain(self):
|
||||
"""Set-theoretic domain of the value-space of a Valuation."""
|
||||
dom = []
|
||||
for val in self.values():
|
||||
if isinstance(val, str):
|
||||
dom.append(val)
|
||||
elif not isinstance(val, bool):
|
||||
dom.extend(
|
||||
[elem for tuple_ in val for elem in tuple_ if elem is not None]
|
||||
)
|
||||
return set(dom)
|
||||
|
||||
@property
|
||||
def symbols(self):
|
||||
"""The non-logical constants which the Valuation recognizes."""
|
||||
return sorted(self.keys())
|
||||
|
||||
@classmethod
|
||||
def fromstring(cls, s):
|
||||
return read_valuation(s)
|
||||
|
||||
|
||||
##########################################
|
||||
# REs used by the _read_valuation function
|
||||
##########################################
|
||||
_VAL_SPLIT_RE = re.compile(r"\s*=+>\s*")
|
||||
_ELEMENT_SPLIT_RE = re.compile(r"\s*,\s*")
|
||||
_TUPLES_RE = re.compile(
|
||||
r"""\s*
|
||||
(\([^)]+\)) # tuple-expression
|
||||
\s*""",
|
||||
re.VERBOSE,
|
||||
)
|
||||
|
||||
|
||||
def _read_valuation_line(s):
|
||||
"""
|
||||
Read a line in a valuation file.
|
||||
|
||||
Lines are expected to be of the form::
|
||||
|
||||
noosa => n
|
||||
girl => {g1, g2}
|
||||
chase => {(b1, g1), (b2, g1), (g1, d1), (g2, d2)}
|
||||
|
||||
:param s: input line
|
||||
:type s: str
|
||||
:return: a pair (symbol, value)
|
||||
:rtype: tuple
|
||||
"""
|
||||
pieces = _VAL_SPLIT_RE.split(s)
|
||||
symbol = pieces[0]
|
||||
value = pieces[1]
|
||||
# check whether the value is meant to be a set
|
||||
if value.startswith("{"):
|
||||
value = value[1:-1]
|
||||
tuple_strings = _TUPLES_RE.findall(value)
|
||||
# are the set elements tuples?
|
||||
if tuple_strings:
|
||||
set_elements = []
|
||||
for ts in tuple_strings:
|
||||
ts = ts[1:-1]
|
||||
element = tuple(_ELEMENT_SPLIT_RE.split(ts))
|
||||
set_elements.append(element)
|
||||
else:
|
||||
set_elements = _ELEMENT_SPLIT_RE.split(value)
|
||||
value = set(set_elements)
|
||||
return symbol, value
|
||||
|
||||
|
||||
def read_valuation(s, encoding=None):
|
||||
"""
|
||||
Convert a valuation string into a valuation.
|
||||
|
||||
:param s: a valuation string
|
||||
:type s: str
|
||||
:param encoding: the encoding of the input string, if it is binary
|
||||
:type encoding: str
|
||||
:return: a ``nltk.sem`` valuation
|
||||
:rtype: Valuation
|
||||
"""
|
||||
if encoding is not None:
|
||||
s = s.decode(encoding)
|
||||
statements = []
|
||||
for linenum, line in enumerate(s.splitlines()):
|
||||
line = line.strip()
|
||||
if line.startswith("#") or line == "":
|
||||
continue
|
||||
try:
|
||||
statements.append(_read_valuation_line(line))
|
||||
except ValueError as e:
|
||||
raise ValueError(f"Unable to parse line {linenum}: {line}") from e
|
||||
return Valuation(statements)
|
||||
|
||||
|
||||
class Assignment(dict):
|
||||
r"""
|
||||
A dictionary which represents an assignment of values to variables.
|
||||
|
||||
An assignment can only assign values from its domain.
|
||||
|
||||
If an unknown expression *a* is passed to a model *M*\ 's
|
||||
interpretation function *i*, *i* will first check whether *M*\ 's
|
||||
valuation assigns an interpretation to *a* as a constant, and if
|
||||
this fails, *i* will delegate the interpretation of *a* to
|
||||
*g*. *g* only assigns values to individual variables (i.e.,
|
||||
members of the class ``IndividualVariableExpression`` in the ``logic``
|
||||
module. If a variable is not assigned a value by *g*, it will raise
|
||||
an ``Undefined`` exception.
|
||||
|
||||
A variable *Assignment* is a mapping from individual variables to
|
||||
entities in the domain. Individual variables are usually indicated
|
||||
with the letters ``'x'``, ``'y'``, ``'w'`` and ``'z'``, optionally
|
||||
followed by an integer (e.g., ``'x0'``, ``'y332'``). Assignments are
|
||||
created using the ``Assignment`` constructor, which also takes the
|
||||
domain as a parameter.
|
||||
|
||||
>>> from nltk.sem.evaluate import Assignment
|
||||
>>> dom = set(['u1', 'u2', 'u3', 'u4'])
|
||||
>>> g3 = Assignment(dom, [('x', 'u1'), ('y', 'u2')])
|
||||
>>> g3 == {'x': 'u1', 'y': 'u2'}
|
||||
True
|
||||
|
||||
There is also a ``print`` format for assignments which uses a notation
|
||||
closer to that in logic textbooks:
|
||||
|
||||
>>> print(g3)
|
||||
g[u1/x][u2/y]
|
||||
|
||||
It is also possible to update an assignment using the ``add`` method:
|
||||
|
||||
>>> dom = set(['u1', 'u2', 'u3', 'u4'])
|
||||
>>> g4 = Assignment(dom)
|
||||
>>> g4.add('x', 'u1')
|
||||
{'x': 'u1'}
|
||||
|
||||
With no arguments, ``purge()`` is equivalent to ``clear()`` on a dictionary:
|
||||
|
||||
>>> g4.purge()
|
||||
>>> g4
|
||||
{}
|
||||
|
||||
:param domain: the domain of discourse
|
||||
:type domain: set
|
||||
:param assign: a list of (varname, value) associations
|
||||
:type assign: list
|
||||
"""
|
||||
|
||||
def __init__(self, domain, assign=None):
|
||||
super().__init__()
|
||||
self.domain = domain
|
||||
if assign:
|
||||
for var, val in assign:
|
||||
assert val in self.domain, "'{}' is not in the domain: {}".format(
|
||||
val,
|
||||
self.domain,
|
||||
)
|
||||
assert is_indvar(var), (
|
||||
"Wrong format for an Individual Variable: '%s'" % var
|
||||
)
|
||||
self[var] = val
|
||||
self.variant = None
|
||||
self._addvariant()
|
||||
|
||||
def __getitem__(self, key):
|
||||
if key in self:
|
||||
return dict.__getitem__(self, key)
|
||||
else:
|
||||
raise Undefined("Not recognized as a variable: '%s'" % key)
|
||||
|
||||
def copy(self):
|
||||
new = Assignment(self.domain)
|
||||
new.update(self)
|
||||
return new
|
||||
|
||||
def purge(self, var=None):
|
||||
"""
|
||||
Remove one or all keys (i.e. logic variables) from an
|
||||
assignment, and update ``self.variant``.
|
||||
|
||||
:param var: a Variable acting as a key for the assignment.
|
||||
"""
|
||||
if var:
|
||||
del self[var]
|
||||
else:
|
||||
self.clear()
|
||||
self._addvariant()
|
||||
return None
|
||||
|
||||
def __str__(self):
|
||||
"""
|
||||
Pretty printing for assignments. {'x', 'u'} appears as 'g[u/x]'
|
||||
"""
|
||||
gstring = "g"
|
||||
# Deterministic output for unit testing.
|
||||
variant = sorted(self.variant)
|
||||
for val, var in variant:
|
||||
gstring += f"[{val}/{var}]"
|
||||
return gstring
|
||||
|
||||
def _addvariant(self):
|
||||
"""
|
||||
Create a more pretty-printable version of the assignment.
|
||||
"""
|
||||
list_ = []
|
||||
for item in self.items():
|
||||
pair = (item[1], item[0])
|
||||
list_.append(pair)
|
||||
self.variant = list_
|
||||
return None
|
||||
|
||||
def add(self, var, val):
|
||||
"""
|
||||
Add a new variable-value pair to the assignment, and update
|
||||
``self.variant``.
|
||||
|
||||
"""
|
||||
assert val in self.domain, f"{val} is not in the domain {self.domain}"
|
||||
assert is_indvar(var), "Wrong format for an Individual Variable: '%s'" % var
|
||||
self[var] = val
|
||||
self._addvariant()
|
||||
return self
|
||||
|
||||
|
||||
class Model:
|
||||
"""
|
||||
A first order model is a domain *D* of discourse and a valuation *V*.
|
||||
|
||||
A domain *D* is a set, and a valuation *V* is a map that associates
|
||||
expressions with values in the model.
|
||||
The domain of *V* should be a subset of *D*.
|
||||
|
||||
Construct a new ``Model``.
|
||||
|
||||
:type domain: set
|
||||
:param domain: A set of entities representing the domain of discourse of the model.
|
||||
:type valuation: Valuation
|
||||
:param valuation: the valuation of the model.
|
||||
:param prop: If this is set, then we are building a propositional\
|
||||
model and don't require the domain of *V* to be subset of *D*.
|
||||
"""
|
||||
|
||||
def __init__(self, domain, valuation):
|
||||
assert isinstance(domain, set)
|
||||
self.domain = domain
|
||||
self.valuation = valuation
|
||||
if not domain.issuperset(valuation.domain):
|
||||
raise Error(
|
||||
"The valuation domain, %s, must be a subset of the model's domain, %s"
|
||||
% (valuation.domain, domain)
|
||||
)
|
||||
|
||||
def __repr__(self):
|
||||
return f"({self.domain!r}, {self.valuation!r})"
|
||||
|
||||
def __str__(self):
|
||||
return f"Domain = {self.domain},\nValuation = \n{self.valuation}"
|
||||
|
||||
def evaluate(self, expr, g, trace=None):
|
||||
"""
|
||||
Read input expressions, and provide a handler for ``satisfy``
|
||||
that blocks further propagation of the ``Undefined`` error.
|
||||
:param expr: An ``Expression`` of ``logic``.
|
||||
:type g: Assignment
|
||||
:param g: an assignment to individual variables.
|
||||
:rtype: bool or 'Undefined'
|
||||
"""
|
||||
try:
|
||||
parsed = Expression.fromstring(expr)
|
||||
value = self.satisfy(parsed, g, trace=trace)
|
||||
if trace:
|
||||
print()
|
||||
print(f"'{expr}' evaluates to {value} under M, {g}")
|
||||
return value
|
||||
except Undefined:
|
||||
if trace:
|
||||
print()
|
||||
print(f"'{expr}' is undefined under M, {g}")
|
||||
return "Undefined"
|
||||
|
||||
def satisfy(self, parsed, g, trace=None):
|
||||
"""
|
||||
Recursive interpretation function for a formula of first-order logic.
|
||||
|
||||
Raises an ``Undefined`` error when ``parsed`` is an atomic string
|
||||
but is not a symbol or an individual variable.
|
||||
|
||||
:return: Returns a truth value or ``Undefined`` if ``parsed`` is\
|
||||
complex, and calls the interpretation function ``i`` if ``parsed``\
|
||||
is atomic.
|
||||
|
||||
:param parsed: An expression of ``logic``.
|
||||
:type g: Assignment
|
||||
:param g: an assignment to individual variables.
|
||||
"""
|
||||
|
||||
if isinstance(parsed, ApplicationExpression):
|
||||
function, arguments = parsed.uncurry()
|
||||
if isinstance(function, AbstractVariableExpression):
|
||||
# It's a predicate expression ("P(x,y)"), so used uncurried arguments
|
||||
funval = self.satisfy(function, g)
|
||||
argvals = tuple(self.satisfy(arg, g) for arg in arguments)
|
||||
return argvals in funval
|
||||
else:
|
||||
# It must be a lambda expression, so use curried form
|
||||
funval = self.satisfy(parsed.function, g)
|
||||
argval = self.satisfy(parsed.argument, g)
|
||||
return funval[argval]
|
||||
elif isinstance(parsed, NegatedExpression):
|
||||
return not self.satisfy(parsed.term, g)
|
||||
elif isinstance(parsed, AndExpression):
|
||||
return self.satisfy(parsed.first, g) and self.satisfy(parsed.second, g)
|
||||
elif isinstance(parsed, OrExpression):
|
||||
return self.satisfy(parsed.first, g) or self.satisfy(parsed.second, g)
|
||||
elif isinstance(parsed, ImpExpression):
|
||||
return (not self.satisfy(parsed.first, g)) or self.satisfy(parsed.second, g)
|
||||
elif isinstance(parsed, IffExpression):
|
||||
return self.satisfy(parsed.first, g) == self.satisfy(parsed.second, g)
|
||||
elif isinstance(parsed, EqualityExpression):
|
||||
return self.satisfy(parsed.first, g) == self.satisfy(parsed.second, g)
|
||||
elif isinstance(parsed, AllExpression):
|
||||
new_g = g.copy()
|
||||
for u in self.domain:
|
||||
new_g.add(parsed.variable.name, u)
|
||||
if not self.satisfy(parsed.term, new_g):
|
||||
return False
|
||||
return True
|
||||
elif isinstance(parsed, ExistsExpression):
|
||||
new_g = g.copy()
|
||||
for u in self.domain:
|
||||
new_g.add(parsed.variable.name, u)
|
||||
if self.satisfy(parsed.term, new_g):
|
||||
return True
|
||||
return False
|
||||
elif isinstance(parsed, IotaExpression):
|
||||
new_g = g.copy()
|
||||
for u in self.domain:
|
||||
new_g.add(parsed.variable.name, u)
|
||||
if self.satisfy(parsed.term, new_g):
|
||||
return True
|
||||
return False
|
||||
elif isinstance(parsed, LambdaExpression):
|
||||
cf = {}
|
||||
var = parsed.variable.name
|
||||
for u in self.domain:
|
||||
val = self.satisfy(parsed.term, g.add(var, u))
|
||||
# NB the dict would be a lot smaller if we do this:
|
||||
# if val: cf[u] = val
|
||||
# But then need to deal with cases where f(a) should yield
|
||||
# a function rather than just False.
|
||||
cf[u] = val
|
||||
return cf
|
||||
else:
|
||||
return self.i(parsed, g, trace)
|
||||
|
||||
# @decorator(trace_eval)
|
||||
def i(self, parsed, g, trace=False):
|
||||
"""
|
||||
An interpretation function.
|
||||
|
||||
Assuming that ``parsed`` is atomic:
|
||||
|
||||
- if ``parsed`` is a non-logical constant, calls the valuation *V*
|
||||
- else if ``parsed`` is an individual variable, calls assignment *g*
|
||||
- else returns ``Undefined``.
|
||||
|
||||
:param parsed: an ``Expression`` of ``logic``.
|
||||
:type g: Assignment
|
||||
:param g: an assignment to individual variables.
|
||||
:return: a semantic value
|
||||
"""
|
||||
# If parsed is a propositional letter 'p', 'q', etc, it could be in valuation.symbols
|
||||
# and also be an IndividualVariableExpression. We want to catch this first case.
|
||||
# So there is a procedural consequence to the ordering of clauses here:
|
||||
if parsed.variable.name in self.valuation.symbols:
|
||||
return self.valuation[parsed.variable.name]
|
||||
elif isinstance(parsed, IndividualVariableExpression):
|
||||
return g[parsed.variable.name]
|
||||
|
||||
else:
|
||||
raise Undefined("Can't find a value for %s" % parsed)
|
||||
|
||||
def satisfiers(self, parsed, varex, g, trace=None, nesting=0):
|
||||
"""
|
||||
Generate the entities from the model's domain that satisfy an open formula.
|
||||
|
||||
:param parsed: an open formula
|
||||
:type parsed: Expression
|
||||
:param varex: the relevant free individual variable in ``parsed``.
|
||||
:type varex: VariableExpression or str
|
||||
:param g: a variable assignment
|
||||
:type g: Assignment
|
||||
:return: a set of the entities that satisfy ``parsed``.
|
||||
"""
|
||||
|
||||
spacer = " "
|
||||
indent = spacer + (spacer * nesting)
|
||||
candidates = []
|
||||
|
||||
if isinstance(varex, str):
|
||||
var = Variable(varex)
|
||||
else:
|
||||
var = varex
|
||||
|
||||
if var in parsed.free():
|
||||
if trace:
|
||||
print()
|
||||
print(
|
||||
(spacer * nesting)
|
||||
+ f"Open formula is '{parsed}' with assignment {g}"
|
||||
)
|
||||
for u in self.domain:
|
||||
new_g = g.copy()
|
||||
new_g.add(var.name, u)
|
||||
if trace and trace > 1:
|
||||
lowtrace = trace - 1
|
||||
else:
|
||||
lowtrace = 0
|
||||
value = self.satisfy(parsed, new_g, lowtrace)
|
||||
|
||||
if trace:
|
||||
print(indent + "(trying assignment %s)" % new_g)
|
||||
|
||||
# parsed == False under g[u/var]?
|
||||
if value == False:
|
||||
if trace:
|
||||
print(indent + f"value of '{parsed}' under {new_g} is False")
|
||||
|
||||
# so g[u/var] is a satisfying assignment
|
||||
else:
|
||||
candidates.append(u)
|
||||
if trace:
|
||||
print(indent + f"value of '{parsed}' under {new_g} is {value}")
|
||||
|
||||
result = {c for c in candidates}
|
||||
# var isn't free in parsed
|
||||
else:
|
||||
raise Undefined(f"{var.name} is not free in {parsed}")
|
||||
|
||||
return result
|
||||
|
||||
|
||||
# //////////////////////////////////////////////////////////////////////
|
||||
# Demo..
|
||||
# //////////////////////////////////////////////////////////////////////
|
||||
# number of spacer chars
|
||||
mult = 30
|
||||
|
||||
|
||||
# Demo 1: Propositional Logic
|
||||
#################
|
||||
def propdemo(trace=None):
|
||||
"""Example of a propositional model."""
|
||||
|
||||
global val1, dom1, m1, g1
|
||||
val1 = Valuation([("P", True), ("Q", True), ("R", False)])
|
||||
dom1 = set()
|
||||
m1 = Model(dom1, val1)
|
||||
g1 = Assignment(dom1)
|
||||
|
||||
print()
|
||||
print("*" * mult)
|
||||
print("Propositional Formulas Demo")
|
||||
print("*" * mult)
|
||||
print("(Propositional constants treated as nullary predicates)")
|
||||
print()
|
||||
print("Model m1:\n", m1)
|
||||
print("*" * mult)
|
||||
sentences = [
|
||||
"(P & Q)",
|
||||
"(P & R)",
|
||||
"- P",
|
||||
"- R",
|
||||
"- - P",
|
||||
"- (P & R)",
|
||||
"(P | R)",
|
||||
"(R | P)",
|
||||
"(R | R)",
|
||||
"(- P | R)",
|
||||
"(P | - P)",
|
||||
"(P -> Q)",
|
||||
"(P -> R)",
|
||||
"(R -> P)",
|
||||
"(P <-> P)",
|
||||
"(R <-> R)",
|
||||
"(P <-> R)",
|
||||
]
|
||||
|
||||
for sent in sentences:
|
||||
if trace:
|
||||
print()
|
||||
m1.evaluate(sent, g1, trace)
|
||||
else:
|
||||
print(f"The value of '{sent}' is: {m1.evaluate(sent, g1)}")
|
||||
|
||||
|
||||
# Demo 2: FOL Model
|
||||
#############
|
||||
|
||||
|
||||
def folmodel(quiet=False, trace=None):
|
||||
"""Example of a first-order model."""
|
||||
|
||||
global val2, v2, dom2, m2, g2
|
||||
|
||||
v2 = [
|
||||
("adam", "b1"),
|
||||
("betty", "g1"),
|
||||
("fido", "d1"),
|
||||
("girl", {"g1", "g2"}),
|
||||
("boy", {"b1", "b2"}),
|
||||
("dog", {"d1"}),
|
||||
("love", {("b1", "g1"), ("b2", "g2"), ("g1", "b1"), ("g2", "b1")}),
|
||||
]
|
||||
val2 = Valuation(v2)
|
||||
dom2 = val2.domain
|
||||
m2 = Model(dom2, val2)
|
||||
g2 = Assignment(dom2, [("x", "b1"), ("y", "g2")])
|
||||
|
||||
if not quiet:
|
||||
print()
|
||||
print("*" * mult)
|
||||
print("Models Demo")
|
||||
print("*" * mult)
|
||||
print("Model m2:\n", "-" * 14, "\n", m2)
|
||||
print("Variable assignment = ", g2)
|
||||
|
||||
exprs = ["adam", "boy", "love", "walks", "x", "y", "z"]
|
||||
parsed_exprs = [Expression.fromstring(e) for e in exprs]
|
||||
|
||||
print()
|
||||
for parsed in parsed_exprs:
|
||||
try:
|
||||
print(
|
||||
"The interpretation of '%s' in m2 is %s"
|
||||
% (parsed, m2.i(parsed, g2))
|
||||
)
|
||||
except Undefined:
|
||||
print("The interpretation of '%s' in m2 is Undefined" % parsed)
|
||||
|
||||
applications = [
|
||||
("boy", ("adam")),
|
||||
("walks", ("adam",)),
|
||||
("love", ("adam", "y")),
|
||||
("love", ("y", "adam")),
|
||||
]
|
||||
|
||||
for fun, args in applications:
|
||||
try:
|
||||
funval = m2.i(Expression.fromstring(fun), g2)
|
||||
argsval = tuple(m2.i(Expression.fromstring(arg), g2) for arg in args)
|
||||
print(f"{fun}({args}) evaluates to {argsval in funval}")
|
||||
except Undefined:
|
||||
print(f"{fun}({args}) evaluates to Undefined")
|
||||
|
||||
|
||||
# Demo 3: FOL
|
||||
#########
|
||||
|
||||
|
||||
def foldemo(trace=None):
|
||||
"""
|
||||
Interpretation of closed expressions in a first-order model.
|
||||
"""
|
||||
folmodel(quiet=True)
|
||||
|
||||
print()
|
||||
print("*" * mult)
|
||||
print("FOL Formulas Demo")
|
||||
print("*" * mult)
|
||||
|
||||
formulas = [
|
||||
"love (adam, betty)",
|
||||
"(adam = mia)",
|
||||
"\\x. (boy(x) | girl(x))",
|
||||
"\\x. boy(x)(adam)",
|
||||
"\\x y. love(x, y)",
|
||||
"\\x y. love(x, y)(adam)(betty)",
|
||||
"\\x y. love(x, y)(adam, betty)",
|
||||
"\\x y. (boy(x) & love(x, y))",
|
||||
"\\x. exists y. (boy(x) & love(x, y))",
|
||||
"exists z1. boy(z1)",
|
||||
"exists x. (boy(x) & -(x = adam))",
|
||||
"exists x. (boy(x) & all y. love(y, x))",
|
||||
"all x. (boy(x) | girl(x))",
|
||||
"all x. (girl(x) -> exists y. boy(y) & love(x, y))", # Every girl loves exists boy.
|
||||
"exists x. (boy(x) & all y. (girl(y) -> love(y, x)))", # There is exists boy that every girl loves.
|
||||
"exists x. (boy(x) & all y. (girl(y) -> love(x, y)))", # exists boy loves every girl.
|
||||
"all x. (dog(x) -> - girl(x))",
|
||||
"exists x. exists y. (love(x, y) & love(x, y))",
|
||||
]
|
||||
|
||||
for fmla in formulas:
|
||||
g2.purge()
|
||||
if trace:
|
||||
m2.evaluate(fmla, g2, trace)
|
||||
else:
|
||||
print(f"The value of '{fmla}' is: {m2.evaluate(fmla, g2)}")
|
||||
|
||||
|
||||
# Demo 3: Satisfaction
|
||||
#############
|
||||
|
||||
|
||||
def satdemo(trace=None):
|
||||
"""Satisfiers of an open formula in a first order model."""
|
||||
|
||||
print()
|
||||
print("*" * mult)
|
||||
print("Satisfiers Demo")
|
||||
print("*" * mult)
|
||||
|
||||
folmodel(quiet=True)
|
||||
|
||||
formulas = [
|
||||
"boy(x)",
|
||||
"(x = x)",
|
||||
"(boy(x) | girl(x))",
|
||||
"(boy(x) & girl(x))",
|
||||
"love(adam, x)",
|
||||
"love(x, adam)",
|
||||
"-(x = adam)",
|
||||
"exists z22. love(x, z22)",
|
||||
"exists y. love(y, x)",
|
||||
"all y. (girl(y) -> love(x, y))",
|
||||
"all y. (girl(y) -> love(y, x))",
|
||||
"all y. (girl(y) -> (boy(x) & love(y, x)))",
|
||||
"(boy(x) & all y. (girl(y) -> love(x, y)))",
|
||||
"(boy(x) & all y. (girl(y) -> love(y, x)))",
|
||||
"(boy(x) & exists y. (girl(y) & love(y, x)))",
|
||||
"(girl(x) -> dog(x))",
|
||||
"all y. (dog(y) -> (x = y))",
|
||||
"exists y. love(y, x)",
|
||||
"exists y. (love(adam, y) & love(y, x))",
|
||||
]
|
||||
|
||||
if trace:
|
||||
print(m2)
|
||||
|
||||
for fmla in formulas:
|
||||
print(fmla)
|
||||
Expression.fromstring(fmla)
|
||||
|
||||
parsed = [Expression.fromstring(fmla) for fmla in formulas]
|
||||
|
||||
for p in parsed:
|
||||
g2.purge()
|
||||
print(
|
||||
"The satisfiers of '{}' are: {}".format(p, m2.satisfiers(p, "x", g2, trace))
|
||||
)
|
||||
|
||||
|
||||
def demo(num=0, trace=None):
|
||||
"""
|
||||
Run exists demos.
|
||||
|
||||
- num = 1: propositional logic demo
|
||||
- num = 2: first order model demo (only if trace is set)
|
||||
- num = 3: first order sentences demo
|
||||
- num = 4: satisfaction of open formulas demo
|
||||
- any other value: run all the demos
|
||||
|
||||
:param trace: trace = 1, or trace = 2 for more verbose tracing
|
||||
"""
|
||||
demos = {1: propdemo, 2: folmodel, 3: foldemo, 4: satdemo}
|
||||
|
||||
try:
|
||||
demos[num](trace=trace)
|
||||
except KeyError:
|
||||
for num in demos:
|
||||
demos[num](trace=trace)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo(2, trace=0)
|
||||
Reference in New Issue
Block a user