updates
This commit is contained in:
122
Backend/venv/lib/python3.12/site-packages/nltk/classify/tadm.py
Normal file
122
Backend/venv/lib/python3.12/site-packages/nltk/classify/tadm.py
Normal file
@@ -0,0 +1,122 @@
|
||||
# Natural Language Toolkit: Interface to TADM Classifier
|
||||
#
|
||||
# Copyright (C) 2001-2025 NLTK Project
|
||||
# Author: Joseph Frazee <jfrazee@mail.utexas.edu>
|
||||
# URL: <https://www.nltk.org/>
|
||||
# For license information, see LICENSE.TXT
|
||||
|
||||
import subprocess
|
||||
import sys
|
||||
|
||||
from nltk.internals import find_binary
|
||||
|
||||
try:
|
||||
import numpy
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
_tadm_bin = None
|
||||
|
||||
|
||||
def config_tadm(bin=None):
|
||||
global _tadm_bin
|
||||
_tadm_bin = find_binary(
|
||||
"tadm", bin, env_vars=["TADM"], binary_names=["tadm"], url="http://tadm.sf.net"
|
||||
)
|
||||
|
||||
|
||||
def write_tadm_file(train_toks, encoding, stream):
|
||||
"""
|
||||
Generate an input file for ``tadm`` based on the given corpus of
|
||||
classified tokens.
|
||||
|
||||
:type train_toks: list(tuple(dict, str))
|
||||
:param train_toks: Training data, represented as a list of
|
||||
pairs, the first member of which is a feature dictionary,
|
||||
and the second of which is a classification label.
|
||||
:type encoding: TadmEventMaxentFeatureEncoding
|
||||
:param encoding: A feature encoding, used to convert featuresets
|
||||
into feature vectors.
|
||||
:type stream: stream
|
||||
:param stream: The stream to which the ``tadm`` input file should be
|
||||
written.
|
||||
"""
|
||||
# See the following for a file format description:
|
||||
#
|
||||
# https://sf.net/forum/forum.php?thread_id=1391502&forum_id=473054
|
||||
# https://sf.net/forum/forum.php?thread_id=1675097&forum_id=473054
|
||||
labels = encoding.labels()
|
||||
for featureset, label in train_toks:
|
||||
length_line = "%d\n" % len(labels)
|
||||
stream.write(length_line)
|
||||
for known_label in labels:
|
||||
v = encoding.encode(featureset, known_label)
|
||||
line = "%d %d %s\n" % (
|
||||
int(label == known_label),
|
||||
len(v),
|
||||
" ".join("%d %d" % u for u in v),
|
||||
)
|
||||
stream.write(line)
|
||||
|
||||
|
||||
def parse_tadm_weights(paramfile):
|
||||
"""
|
||||
Given the stdout output generated by ``tadm`` when training a
|
||||
model, return a ``numpy`` array containing the corresponding weight
|
||||
vector.
|
||||
"""
|
||||
weights = []
|
||||
for line in paramfile:
|
||||
weights.append(float(line.strip()))
|
||||
return numpy.array(weights, "d")
|
||||
|
||||
|
||||
def call_tadm(args):
|
||||
"""
|
||||
Call the ``tadm`` binary with the given arguments.
|
||||
"""
|
||||
if isinstance(args, str):
|
||||
raise TypeError("args should be a list of strings")
|
||||
if _tadm_bin is None:
|
||||
config_tadm()
|
||||
|
||||
# Call tadm via a subprocess
|
||||
cmd = [_tadm_bin] + args
|
||||
p = subprocess.Popen(cmd, stdout=sys.stdout)
|
||||
(stdout, stderr) = p.communicate()
|
||||
|
||||
# Check the return code.
|
||||
if p.returncode != 0:
|
||||
print()
|
||||
print(stderr)
|
||||
raise OSError("tadm command failed!")
|
||||
|
||||
|
||||
def names_demo():
|
||||
from nltk.classify.maxent import TadmMaxentClassifier
|
||||
from nltk.classify.util import names_demo
|
||||
|
||||
classifier = names_demo(TadmMaxentClassifier.train)
|
||||
|
||||
|
||||
def encoding_demo():
|
||||
import sys
|
||||
|
||||
from nltk.classify.maxent import TadmEventMaxentFeatureEncoding
|
||||
|
||||
tokens = [
|
||||
({"f0": 1, "f1": 1, "f3": 1}, "A"),
|
||||
({"f0": 1, "f2": 1, "f4": 1}, "B"),
|
||||
({"f0": 2, "f2": 1, "f3": 1, "f4": 1}, "A"),
|
||||
]
|
||||
encoding = TadmEventMaxentFeatureEncoding.train(tokens)
|
||||
write_tadm_file(tokens, encoding, sys.stdout)
|
||||
print()
|
||||
for i in range(encoding.length()):
|
||||
print("%s --> %d" % (encoding.describe(i), i))
|
||||
print()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
encoding_demo()
|
||||
names_demo()
|
||||
Reference in New Issue
Block a user