updates
This commit is contained in:
195
Backend/venv/lib/python3.12/site-packages/nltk/classify/api.py
Normal file
195
Backend/venv/lib/python3.12/site-packages/nltk/classify/api.py
Normal file
@@ -0,0 +1,195 @@
|
||||
# Natural Language Toolkit: Classifier Interface
|
||||
#
|
||||
# Copyright (C) 2001-2025 NLTK Project
|
||||
# Author: Edward Loper <edloper@gmail.com>
|
||||
# Steven Bird <stevenbird1@gmail.com> (minor additions)
|
||||
# URL: <https://www.nltk.org/>
|
||||
# For license information, see LICENSE.TXT
|
||||
|
||||
"""
|
||||
Interfaces for labeling tokens with category labels (or "class labels").
|
||||
|
||||
``ClassifierI`` is a standard interface for "single-category
|
||||
classification", in which the set of categories is known, the number
|
||||
of categories is finite, and each text belongs to exactly one
|
||||
category.
|
||||
|
||||
``MultiClassifierI`` is a standard interface for "multi-category
|
||||
classification", which is like single-category classification except
|
||||
that each text belongs to zero or more categories.
|
||||
"""
|
||||
from nltk.internals import overridden
|
||||
|
||||
##//////////////////////////////////////////////////////
|
||||
# { Classification Interfaces
|
||||
##//////////////////////////////////////////////////////
|
||||
|
||||
|
||||
class ClassifierI:
|
||||
"""
|
||||
A processing interface for labeling tokens with a single category
|
||||
label (or "class"). Labels are typically strs or
|
||||
ints, but can be any immutable type. The set of labels
|
||||
that the classifier chooses from must be fixed and finite.
|
||||
|
||||
Subclasses must define:
|
||||
- ``labels()``
|
||||
- either ``classify()`` or ``classify_many()`` (or both)
|
||||
|
||||
Subclasses may define:
|
||||
- either ``prob_classify()`` or ``prob_classify_many()`` (or both)
|
||||
"""
|
||||
|
||||
def labels(self):
|
||||
"""
|
||||
:return: the list of category labels used by this classifier.
|
||||
:rtype: list of (immutable)
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def classify(self, featureset):
|
||||
"""
|
||||
:return: the most appropriate label for the given featureset.
|
||||
:rtype: label
|
||||
"""
|
||||
if overridden(self.classify_many):
|
||||
return self.classify_many([featureset])[0]
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
def prob_classify(self, featureset):
|
||||
"""
|
||||
:return: a probability distribution over labels for the given
|
||||
featureset.
|
||||
:rtype: ProbDistI
|
||||
"""
|
||||
if overridden(self.prob_classify_many):
|
||||
return self.prob_classify_many([featureset])[0]
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
def classify_many(self, featuresets):
|
||||
"""
|
||||
Apply ``self.classify()`` to each element of ``featuresets``. I.e.:
|
||||
|
||||
return [self.classify(fs) for fs in featuresets]
|
||||
|
||||
:rtype: list(label)
|
||||
"""
|
||||
return [self.classify(fs) for fs in featuresets]
|
||||
|
||||
def prob_classify_many(self, featuresets):
|
||||
"""
|
||||
Apply ``self.prob_classify()`` to each element of ``featuresets``. I.e.:
|
||||
|
||||
return [self.prob_classify(fs) for fs in featuresets]
|
||||
|
||||
:rtype: list(ProbDistI)
|
||||
"""
|
||||
return [self.prob_classify(fs) for fs in featuresets]
|
||||
|
||||
|
||||
class MultiClassifierI:
|
||||
"""
|
||||
A processing interface for labeling tokens with zero or more
|
||||
category labels (or "labels"). Labels are typically strs
|
||||
or ints, but can be any immutable type. The set of labels
|
||||
that the multi-classifier chooses from must be fixed and finite.
|
||||
|
||||
Subclasses must define:
|
||||
- ``labels()``
|
||||
- either ``classify()`` or ``classify_many()`` (or both)
|
||||
|
||||
Subclasses may define:
|
||||
- either ``prob_classify()`` or ``prob_classify_many()`` (or both)
|
||||
"""
|
||||
|
||||
def labels(self):
|
||||
"""
|
||||
:return: the list of category labels used by this classifier.
|
||||
:rtype: list of (immutable)
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def classify(self, featureset):
|
||||
"""
|
||||
:return: the most appropriate set of labels for the given featureset.
|
||||
:rtype: set(label)
|
||||
"""
|
||||
if overridden(self.classify_many):
|
||||
return self.classify_many([featureset])[0]
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
def prob_classify(self, featureset):
|
||||
"""
|
||||
:return: a probability distribution over sets of labels for the
|
||||
given featureset.
|
||||
:rtype: ProbDistI
|
||||
"""
|
||||
if overridden(self.prob_classify_many):
|
||||
return self.prob_classify_many([featureset])[0]
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
def classify_many(self, featuresets):
|
||||
"""
|
||||
Apply ``self.classify()`` to each element of ``featuresets``. I.e.:
|
||||
|
||||
return [self.classify(fs) for fs in featuresets]
|
||||
|
||||
:rtype: list(set(label))
|
||||
"""
|
||||
return [self.classify(fs) for fs in featuresets]
|
||||
|
||||
def prob_classify_many(self, featuresets):
|
||||
"""
|
||||
Apply ``self.prob_classify()`` to each element of ``featuresets``. I.e.:
|
||||
|
||||
return [self.prob_classify(fs) for fs in featuresets]
|
||||
|
||||
:rtype: list(ProbDistI)
|
||||
"""
|
||||
return [self.prob_classify(fs) for fs in featuresets]
|
||||
|
||||
|
||||
# # [XX] IN PROGRESS:
|
||||
# class SequenceClassifierI:
|
||||
# """
|
||||
# A processing interface for labeling sequences of tokens with a
|
||||
# single category label (or "class"). Labels are typically
|
||||
# strs or ints, but can be any immutable type. The set
|
||||
# of labels that the classifier chooses from must be fixed and
|
||||
# finite.
|
||||
# """
|
||||
# def labels(self):
|
||||
# """
|
||||
# :return: the list of category labels used by this classifier.
|
||||
# :rtype: list of (immutable)
|
||||
# """
|
||||
# raise NotImplementedError()
|
||||
|
||||
# def prob_classify(self, featureset):
|
||||
# """
|
||||
# Return a probability distribution over labels for the given
|
||||
# featureset.
|
||||
|
||||
# If ``featureset`` is a list of featuresets, then return a
|
||||
# corresponding list containing the probability distribution
|
||||
# over labels for each of the given featuresets, where the
|
||||
# *i*\ th element of this list is the most appropriate label for
|
||||
# the *i*\ th element of ``featuresets``.
|
||||
# """
|
||||
# raise NotImplementedError()
|
||||
|
||||
# def classify(self, featureset):
|
||||
# """
|
||||
# Return the most appropriate label for the given featureset.
|
||||
|
||||
# If ``featureset`` is a list of featuresets, then return a
|
||||
# corresponding list containing the most appropriate label for
|
||||
# each of the given featuresets, where the *i*\ th element of
|
||||
# this list is the most appropriate label for the *i*\ th element
|
||||
# of ``featuresets``.
|
||||
# """
|
||||
# raise NotImplementedError()
|
||||
Reference in New Issue
Block a user