This commit is contained in:
Iliyan Angelov
2025-11-24 03:52:08 +02:00
parent dfcaebaf8c
commit 366f28677a
18241 changed files with 865352 additions and 567 deletions

View File

@@ -0,0 +1,108 @@
import redis
from redis._parsers.helpers import bool_ok
from ..helpers import get_protocol_version, parse_to_list
from .commands import (
ALTER_CMD,
CREATE_CMD,
CREATERULE_CMD,
DEL_CMD,
DELETERULE_CMD,
GET_CMD,
INFO_CMD,
MGET_CMD,
MRANGE_CMD,
MREVRANGE_CMD,
QUERYINDEX_CMD,
RANGE_CMD,
REVRANGE_CMD,
TimeSeriesCommands,
)
from .info import TSInfo
from .utils import parse_get, parse_m_get, parse_m_range, parse_range
class TimeSeries(TimeSeriesCommands):
"""
This class subclasses redis-py's `Redis` and implements RedisTimeSeries's
commands (prefixed with "ts").
The client allows to interact with RedisTimeSeries and use all of it's
functionality.
"""
def __init__(self, client=None, **kwargs):
"""Create a new RedisTimeSeries client."""
# Set the module commands' callbacks
self._MODULE_CALLBACKS = {
ALTER_CMD: bool_ok,
CREATE_CMD: bool_ok,
CREATERULE_CMD: bool_ok,
DELETERULE_CMD: bool_ok,
}
_RESP2_MODULE_CALLBACKS = {
DEL_CMD: int,
GET_CMD: parse_get,
INFO_CMD: TSInfo,
MGET_CMD: parse_m_get,
MRANGE_CMD: parse_m_range,
MREVRANGE_CMD: parse_m_range,
RANGE_CMD: parse_range,
REVRANGE_CMD: parse_range,
QUERYINDEX_CMD: parse_to_list,
}
_RESP3_MODULE_CALLBACKS = {}
self.client = client
self.execute_command = client.execute_command
if get_protocol_version(self.client) in ["3", 3]:
self._MODULE_CALLBACKS.update(_RESP3_MODULE_CALLBACKS)
else:
self._MODULE_CALLBACKS.update(_RESP2_MODULE_CALLBACKS)
for k, v in self._MODULE_CALLBACKS.items():
self.client.set_response_callback(k, v)
def pipeline(self, transaction=True, shard_hint=None):
"""Creates a pipeline for the TimeSeries module, that can be used
for executing only TimeSeries commands and core commands.
Usage example:
r = redis.Redis()
pipe = r.ts().pipeline()
for i in range(100):
pipeline.add("with_pipeline", i, 1.1 * i)
pipeline.execute()
"""
if isinstance(self.client, redis.RedisCluster):
p = ClusterPipeline(
nodes_manager=self.client.nodes_manager,
commands_parser=self.client.commands_parser,
startup_nodes=self.client.nodes_manager.startup_nodes,
result_callbacks=self.client.result_callbacks,
cluster_response_callbacks=self.client.cluster_response_callbacks,
cluster_error_retry_attempts=self.client.cluster_error_retry_attempts,
read_from_replicas=self.client.read_from_replicas,
reinitialize_steps=self.client.reinitialize_steps,
lock=self.client._lock,
)
else:
p = Pipeline(
connection_pool=self.client.connection_pool,
response_callbacks=self._MODULE_CALLBACKS,
transaction=transaction,
shard_hint=shard_hint,
)
return p
class ClusterPipeline(TimeSeriesCommands, redis.cluster.ClusterPipeline):
"""Cluster pipeline for the module."""
class Pipeline(TimeSeriesCommands, redis.client.Pipeline):
"""Pipeline for the module."""

View File

@@ -0,0 +1,896 @@
from typing import Dict, List, Optional, Tuple, Union
from redis.exceptions import DataError
from redis.typing import KeyT, Number
ADD_CMD = "TS.ADD"
ALTER_CMD = "TS.ALTER"
CREATERULE_CMD = "TS.CREATERULE"
CREATE_CMD = "TS.CREATE"
DECRBY_CMD = "TS.DECRBY"
DELETERULE_CMD = "TS.DELETERULE"
DEL_CMD = "TS.DEL"
GET_CMD = "TS.GET"
INCRBY_CMD = "TS.INCRBY"
INFO_CMD = "TS.INFO"
MADD_CMD = "TS.MADD"
MGET_CMD = "TS.MGET"
MRANGE_CMD = "TS.MRANGE"
MREVRANGE_CMD = "TS.MREVRANGE"
QUERYINDEX_CMD = "TS.QUERYINDEX"
RANGE_CMD = "TS.RANGE"
REVRANGE_CMD = "TS.REVRANGE"
class TimeSeriesCommands:
"""RedisTimeSeries Commands."""
def create(
self,
key: KeyT,
retention_msecs: Optional[int] = None,
uncompressed: Optional[bool] = False,
labels: Optional[Dict[str, str]] = None,
chunk_size: Optional[int] = None,
duplicate_policy: Optional[str] = None,
):
"""
Create a new time-series.
Args:
key:
time-series key
retention_msecs:
Maximum age for samples compared to highest reported timestamp (in milliseconds).
If None or 0 is passed then the series is not trimmed at all.
uncompressed:
Changes data storage from compressed (by default) to uncompressed
labels:
Set of label-value pairs that represent metadata labels of the key.
chunk_size:
Memory size, in bytes, allocated for each data chunk.
Must be a multiple of 8 in the range [128 .. 1048576].
duplicate_policy:
Policy for handling multiple samples with identical timestamps.
Can be one of:
- 'block': an error will occur for any out of order sample.
- 'first': ignore the new value.
- 'last': override with latest value.
- 'min': only override if the value is lower than the existing value.
- 'max': only override if the value is higher than the existing value.
For more information: https://redis.io/commands/ts.create/
""" # noqa
params = [key]
self._append_retention(params, retention_msecs)
self._append_uncompressed(params, uncompressed)
self._append_chunk_size(params, chunk_size)
self._append_duplicate_policy(params, CREATE_CMD, duplicate_policy)
self._append_labels(params, labels)
return self.execute_command(CREATE_CMD, *params)
def alter(
self,
key: KeyT,
retention_msecs: Optional[int] = None,
labels: Optional[Dict[str, str]] = None,
chunk_size: Optional[int] = None,
duplicate_policy: Optional[str] = None,
):
"""
Update the retention, chunk size, duplicate policy, and labels of an existing
time series.
Args:
key:
time-series key
retention_msecs:
Maximum retention period, compared to maximal existing timestamp (in milliseconds).
If None or 0 is passed then the series is not trimmed at all.
labels:
Set of label-value pairs that represent metadata labels of the key.
chunk_size:
Memory size, in bytes, allocated for each data chunk.
Must be a multiple of 8 in the range [128 .. 1048576].
duplicate_policy:
Policy for handling multiple samples with identical timestamps.
Can be one of:
- 'block': an error will occur for any out of order sample.
- 'first': ignore the new value.
- 'last': override with latest value.
- 'min': only override if the value is lower than the existing value.
- 'max': only override if the value is higher than the existing value.
For more information: https://redis.io/commands/ts.alter/
""" # noqa
params = [key]
self._append_retention(params, retention_msecs)
self._append_chunk_size(params, chunk_size)
self._append_duplicate_policy(params, ALTER_CMD, duplicate_policy)
self._append_labels(params, labels)
return self.execute_command(ALTER_CMD, *params)
def add(
self,
key: KeyT,
timestamp: Union[int, str],
value: Number,
retention_msecs: Optional[int] = None,
uncompressed: Optional[bool] = False,
labels: Optional[Dict[str, str]] = None,
chunk_size: Optional[int] = None,
duplicate_policy: Optional[str] = None,
):
"""
Append (or create and append) a new sample to a time series.
Args:
key:
time-series key
timestamp:
Timestamp of the sample. * can be used for automatic timestamp (using the system clock).
value:
Numeric data value of the sample
retention_msecs:
Maximum retention period, compared to maximal existing timestamp (in milliseconds).
If None or 0 is passed then the series is not trimmed at all.
uncompressed:
Changes data storage from compressed (by default) to uncompressed
labels:
Set of label-value pairs that represent metadata labels of the key.
chunk_size:
Memory size, in bytes, allocated for each data chunk.
Must be a multiple of 8 in the range [128 .. 1048576].
duplicate_policy:
Policy for handling multiple samples with identical timestamps.
Can be one of:
- 'block': an error will occur for any out of order sample.
- 'first': ignore the new value.
- 'last': override with latest value.
- 'min': only override if the value is lower than the existing value.
- 'max': only override if the value is higher than the existing value.
For more information: https://redis.io/commands/ts.add/
""" # noqa
params = [key, timestamp, value]
self._append_retention(params, retention_msecs)
self._append_uncompressed(params, uncompressed)
self._append_chunk_size(params, chunk_size)
self._append_duplicate_policy(params, ADD_CMD, duplicate_policy)
self._append_labels(params, labels)
return self.execute_command(ADD_CMD, *params)
def madd(self, ktv_tuples: List[Tuple[KeyT, Union[int, str], Number]]):
"""
Append (or create and append) a new `value` to series
`key` with `timestamp`.
Expects a list of `tuples` as (`key`,`timestamp`, `value`).
Return value is an array with timestamps of insertions.
For more information: https://redis.io/commands/ts.madd/
""" # noqa
params = []
for ktv in ktv_tuples:
params.extend(ktv)
return self.execute_command(MADD_CMD, *params)
def incrby(
self,
key: KeyT,
value: Number,
timestamp: Optional[Union[int, str]] = None,
retention_msecs: Optional[int] = None,
uncompressed: Optional[bool] = False,
labels: Optional[Dict[str, str]] = None,
chunk_size: Optional[int] = None,
):
"""
Increment (or create an time-series and increment) the latest sample's of a series.
This command can be used as a counter or gauge that automatically gets history as a time series.
Args:
key:
time-series key
value:
Numeric data value of the sample
timestamp:
Timestamp of the sample. * can be used for automatic timestamp (using the system clock).
retention_msecs:
Maximum age for samples compared to last event time (in milliseconds).
If None or 0 is passed then the series is not trimmed at all.
uncompressed:
Changes data storage from compressed (by default) to uncompressed
labels:
Set of label-value pairs that represent metadata labels of the key.
chunk_size:
Memory size, in bytes, allocated for each data chunk.
For more information: https://redis.io/commands/ts.incrby/
""" # noqa
params = [key, value]
self._append_timestamp(params, timestamp)
self._append_retention(params, retention_msecs)
self._append_uncompressed(params, uncompressed)
self._append_chunk_size(params, chunk_size)
self._append_labels(params, labels)
return self.execute_command(INCRBY_CMD, *params)
def decrby(
self,
key: KeyT,
value: Number,
timestamp: Optional[Union[int, str]] = None,
retention_msecs: Optional[int] = None,
uncompressed: Optional[bool] = False,
labels: Optional[Dict[str, str]] = None,
chunk_size: Optional[int] = None,
):
"""
Decrement (or create an time-series and decrement) the latest sample's of a series.
This command can be used as a counter or gauge that automatically gets history as a time series.
Args:
key:
time-series key
value:
Numeric data value of the sample
timestamp:
Timestamp of the sample. * can be used for automatic timestamp (using the system clock).
retention_msecs:
Maximum age for samples compared to last event time (in milliseconds).
If None or 0 is passed then the series is not trimmed at all.
uncompressed:
Changes data storage from compressed (by default) to uncompressed
labels:
Set of label-value pairs that represent metadata labels of the key.
chunk_size:
Memory size, in bytes, allocated for each data chunk.
For more information: https://redis.io/commands/ts.decrby/
""" # noqa
params = [key, value]
self._append_timestamp(params, timestamp)
self._append_retention(params, retention_msecs)
self._append_uncompressed(params, uncompressed)
self._append_chunk_size(params, chunk_size)
self._append_labels(params, labels)
return self.execute_command(DECRBY_CMD, *params)
def delete(self, key: KeyT, from_time: int, to_time: int):
"""
Delete all samples between two timestamps for a given time series.
Args:
key:
time-series key.
from_time:
Start timestamp for the range deletion.
to_time:
End timestamp for the range deletion.
For more information: https://redis.io/commands/ts.del/
""" # noqa
return self.execute_command(DEL_CMD, key, from_time, to_time)
def createrule(
self,
source_key: KeyT,
dest_key: KeyT,
aggregation_type: str,
bucket_size_msec: int,
align_timestamp: Optional[int] = None,
):
"""
Create a compaction rule from values added to `source_key` into `dest_key`.
Args:
source_key:
Key name for source time series
dest_key:
Key name for destination (compacted) time series
aggregation_type:
Aggregation type: One of the following:
[`avg`, `sum`, `min`, `max`, `range`, `count`, `first`, `last`, `std.p`,
`std.s`, `var.p`, `var.s`, `twa`]
bucket_size_msec:
Duration of each bucket, in milliseconds
align_timestamp:
Assure that there is a bucket that starts at exactly align_timestamp and
align all other buckets accordingly.
For more information: https://redis.io/commands/ts.createrule/
""" # noqa
params = [source_key, dest_key]
self._append_aggregation(params, aggregation_type, bucket_size_msec)
if align_timestamp is not None:
params.append(align_timestamp)
return self.execute_command(CREATERULE_CMD, *params)
def deleterule(self, source_key: KeyT, dest_key: KeyT):
"""
Delete a compaction rule from `source_key` to `dest_key`..
For more information: https://redis.io/commands/ts.deleterule/
""" # noqa
return self.execute_command(DELETERULE_CMD, source_key, dest_key)
def __range_params(
self,
key: KeyT,
from_time: Union[int, str],
to_time: Union[int, str],
count: Optional[int],
aggregation_type: Optional[str],
bucket_size_msec: Optional[int],
filter_by_ts: Optional[List[int]],
filter_by_min_value: Optional[int],
filter_by_max_value: Optional[int],
align: Optional[Union[int, str]],
latest: Optional[bool],
bucket_timestamp: Optional[str],
empty: Optional[bool],
):
"""Create TS.RANGE and TS.REVRANGE arguments."""
params = [key, from_time, to_time]
self._append_latest(params, latest)
self._append_filer_by_ts(params, filter_by_ts)
self._append_filer_by_value(params, filter_by_min_value, filter_by_max_value)
self._append_count(params, count)
self._append_align(params, align)
self._append_aggregation(params, aggregation_type, bucket_size_msec)
self._append_bucket_timestamp(params, bucket_timestamp)
self._append_empty(params, empty)
return params
def range(
self,
key: KeyT,
from_time: Union[int, str],
to_time: Union[int, str],
count: Optional[int] = None,
aggregation_type: Optional[str] = None,
bucket_size_msec: Optional[int] = 0,
filter_by_ts: Optional[List[int]] = None,
filter_by_min_value: Optional[int] = None,
filter_by_max_value: Optional[int] = None,
align: Optional[Union[int, str]] = None,
latest: Optional[bool] = False,
bucket_timestamp: Optional[str] = None,
empty: Optional[bool] = False,
):
"""
Query a range in forward direction for a specific time-serie.
Args:
key:
Key name for timeseries.
from_time:
Start timestamp for the range query. - can be used to express the minimum possible timestamp (0).
to_time:
End timestamp for range query, + can be used to express the maximum possible timestamp.
count:
Limits the number of returned samples.
aggregation_type:
Optional aggregation type. Can be one of [`avg`, `sum`, `min`, `max`,
`range`, `count`, `first`, `last`, `std.p`, `std.s`, `var.p`, `var.s`, `twa`]
bucket_size_msec:
Time bucket for aggregation in milliseconds.
filter_by_ts:
List of timestamps to filter the result by specific timestamps.
filter_by_min_value:
Filter result by minimum value (must mention also filter by_max_value).
filter_by_max_value:
Filter result by maximum value (must mention also filter by_min_value).
align:
Timestamp for alignment control for aggregation.
latest:
Used when a time series is a compaction, reports the compacted value of the
latest possibly partial bucket
bucket_timestamp:
Controls how bucket timestamps are reported. Can be one of [`-`, `low`, `+`,
`high`, `~`, `mid`].
empty:
Reports aggregations for empty buckets.
For more information: https://redis.io/commands/ts.range/
""" # noqa
params = self.__range_params(
key,
from_time,
to_time,
count,
aggregation_type,
bucket_size_msec,
filter_by_ts,
filter_by_min_value,
filter_by_max_value,
align,
latest,
bucket_timestamp,
empty,
)
return self.execute_command(RANGE_CMD, *params)
def revrange(
self,
key: KeyT,
from_time: Union[int, str],
to_time: Union[int, str],
count: Optional[int] = None,
aggregation_type: Optional[str] = None,
bucket_size_msec: Optional[int] = 0,
filter_by_ts: Optional[List[int]] = None,
filter_by_min_value: Optional[int] = None,
filter_by_max_value: Optional[int] = None,
align: Optional[Union[int, str]] = None,
latest: Optional[bool] = False,
bucket_timestamp: Optional[str] = None,
empty: Optional[bool] = False,
):
"""
Query a range in reverse direction for a specific time-series.
**Note**: This command is only available since RedisTimeSeries >= v1.4
Args:
key:
Key name for timeseries.
from_time:
Start timestamp for the range query. - can be used to express the minimum possible timestamp (0).
to_time:
End timestamp for range query, + can be used to express the maximum possible timestamp.
count:
Limits the number of returned samples.
aggregation_type:
Optional aggregation type. Can be one of [`avg`, `sum`, `min`, `max`,
`range`, `count`, `first`, `last`, `std.p`, `std.s`, `var.p`, `var.s`, `twa`]
bucket_size_msec:
Time bucket for aggregation in milliseconds.
filter_by_ts:
List of timestamps to filter the result by specific timestamps.
filter_by_min_value:
Filter result by minimum value (must mention also filter_by_max_value).
filter_by_max_value:
Filter result by maximum value (must mention also filter_by_min_value).
align:
Timestamp for alignment control for aggregation.
latest:
Used when a time series is a compaction, reports the compacted value of the
latest possibly partial bucket
bucket_timestamp:
Controls how bucket timestamps are reported. Can be one of [`-`, `low`, `+`,
`high`, `~`, `mid`].
empty:
Reports aggregations for empty buckets.
For more information: https://redis.io/commands/ts.revrange/
""" # noqa
params = self.__range_params(
key,
from_time,
to_time,
count,
aggregation_type,
bucket_size_msec,
filter_by_ts,
filter_by_min_value,
filter_by_max_value,
align,
latest,
bucket_timestamp,
empty,
)
return self.execute_command(REVRANGE_CMD, *params)
def __mrange_params(
self,
aggregation_type: Optional[str],
bucket_size_msec: Optional[int],
count: Optional[int],
filters: List[str],
from_time: Union[int, str],
to_time: Union[int, str],
with_labels: Optional[bool],
filter_by_ts: Optional[List[int]],
filter_by_min_value: Optional[int],
filter_by_max_value: Optional[int],
groupby: Optional[str],
reduce: Optional[str],
select_labels: Optional[List[str]],
align: Optional[Union[int, str]],
latest: Optional[bool],
bucket_timestamp: Optional[str],
empty: Optional[bool],
):
"""Create TS.MRANGE and TS.MREVRANGE arguments."""
params = [from_time, to_time]
self._append_latest(params, latest)
self._append_filer_by_ts(params, filter_by_ts)
self._append_filer_by_value(params, filter_by_min_value, filter_by_max_value)
self._append_with_labels(params, with_labels, select_labels)
self._append_count(params, count)
self._append_align(params, align)
self._append_aggregation(params, aggregation_type, bucket_size_msec)
self._append_bucket_timestamp(params, bucket_timestamp)
self._append_empty(params, empty)
params.extend(["FILTER"])
params += filters
self._append_groupby_reduce(params, groupby, reduce)
return params
def mrange(
self,
from_time: Union[int, str],
to_time: Union[int, str],
filters: List[str],
count: Optional[int] = None,
aggregation_type: Optional[str] = None,
bucket_size_msec: Optional[int] = 0,
with_labels: Optional[bool] = False,
filter_by_ts: Optional[List[int]] = None,
filter_by_min_value: Optional[int] = None,
filter_by_max_value: Optional[int] = None,
groupby: Optional[str] = None,
reduce: Optional[str] = None,
select_labels: Optional[List[str]] = None,
align: Optional[Union[int, str]] = None,
latest: Optional[bool] = False,
bucket_timestamp: Optional[str] = None,
empty: Optional[bool] = False,
):
"""
Query a range across multiple time-series by filters in forward direction.
Args:
from_time:
Start timestamp for the range query. `-` can be used to express the minimum possible timestamp (0).
to_time:
End timestamp for range query, `+` can be used to express the maximum possible timestamp.
filters:
filter to match the time-series labels.
count:
Limits the number of returned samples.
aggregation_type:
Optional aggregation type. Can be one of [`avg`, `sum`, `min`, `max`,
`range`, `count`, `first`, `last`, `std.p`, `std.s`, `var.p`, `var.s`, `twa`]
bucket_size_msec:
Time bucket for aggregation in milliseconds.
with_labels:
Include in the reply all label-value pairs representing metadata labels of the time series.
filter_by_ts:
List of timestamps to filter the result by specific timestamps.
filter_by_min_value:
Filter result by minimum value (must mention also filter_by_max_value).
filter_by_max_value:
Filter result by maximum value (must mention also filter_by_min_value).
groupby:
Grouping by fields the results (must mention also reduce).
reduce:
Applying reducer functions on each group. Can be one of [`avg` `sum`, `min`,
`max`, `range`, `count`, `std.p`, `std.s`, `var.p`, `var.s`].
select_labels:
Include in the reply only a subset of the key-value pair labels of a series.
align:
Timestamp for alignment control for aggregation.
latest:
Used when a time series is a compaction, reports the compacted
value of the latest possibly partial bucket
bucket_timestamp:
Controls how bucket timestamps are reported. Can be one of [`-`, `low`, `+`,
`high`, `~`, `mid`].
empty:
Reports aggregations for empty buckets.
For more information: https://redis.io/commands/ts.mrange/
""" # noqa
params = self.__mrange_params(
aggregation_type,
bucket_size_msec,
count,
filters,
from_time,
to_time,
with_labels,
filter_by_ts,
filter_by_min_value,
filter_by_max_value,
groupby,
reduce,
select_labels,
align,
latest,
bucket_timestamp,
empty,
)
return self.execute_command(MRANGE_CMD, *params)
def mrevrange(
self,
from_time: Union[int, str],
to_time: Union[int, str],
filters: List[str],
count: Optional[int] = None,
aggregation_type: Optional[str] = None,
bucket_size_msec: Optional[int] = 0,
with_labels: Optional[bool] = False,
filter_by_ts: Optional[List[int]] = None,
filter_by_min_value: Optional[int] = None,
filter_by_max_value: Optional[int] = None,
groupby: Optional[str] = None,
reduce: Optional[str] = None,
select_labels: Optional[List[str]] = None,
align: Optional[Union[int, str]] = None,
latest: Optional[bool] = False,
bucket_timestamp: Optional[str] = None,
empty: Optional[bool] = False,
):
"""
Query a range across multiple time-series by filters in reverse direction.
Args:
from_time:
Start timestamp for the range query. - can be used to express the minimum possible timestamp (0).
to_time:
End timestamp for range query, + can be used to express the maximum possible timestamp.
filters:
Filter to match the time-series labels.
count:
Limits the number of returned samples.
aggregation_type:
Optional aggregation type. Can be one of [`avg`, `sum`, `min`, `max`,
`range`, `count`, `first`, `last`, `std.p`, `std.s`, `var.p`, `var.s`, `twa`]
bucket_size_msec:
Time bucket for aggregation in milliseconds.
with_labels:
Include in the reply all label-value pairs representing metadata labels of the time series.
filter_by_ts:
List of timestamps to filter the result by specific timestamps.
filter_by_min_value:
Filter result by minimum value (must mention also filter_by_max_value).
filter_by_max_value:
Filter result by maximum value (must mention also filter_by_min_value).
groupby:
Grouping by fields the results (must mention also reduce).
reduce:
Applying reducer functions on each group. Can be one of [`avg` `sum`, `min`,
`max`, `range`, `count`, `std.p`, `std.s`, `var.p`, `var.s`].
select_labels:
Include in the reply only a subset of the key-value pair labels of a series.
align:
Timestamp for alignment control for aggregation.
latest:
Used when a time series is a compaction, reports the compacted
value of the latest possibly partial bucket
bucket_timestamp:
Controls how bucket timestamps are reported. Can be one of [`-`, `low`, `+`,
`high`, `~`, `mid`].
empty:
Reports aggregations for empty buckets.
For more information: https://redis.io/commands/ts.mrevrange/
""" # noqa
params = self.__mrange_params(
aggregation_type,
bucket_size_msec,
count,
filters,
from_time,
to_time,
with_labels,
filter_by_ts,
filter_by_min_value,
filter_by_max_value,
groupby,
reduce,
select_labels,
align,
latest,
bucket_timestamp,
empty,
)
return self.execute_command(MREVRANGE_CMD, *params)
def get(self, key: KeyT, latest: Optional[bool] = False):
"""# noqa
Get the last sample of `key`.
`latest` used when a time series is a compaction, reports the compacted
value of the latest (possibly partial) bucket
For more information: https://redis.io/commands/ts.get/
""" # noqa
params = [key]
self._append_latest(params, latest)
return self.execute_command(GET_CMD, *params)
def mget(
self,
filters: List[str],
with_labels: Optional[bool] = False,
select_labels: Optional[List[str]] = None,
latest: Optional[bool] = False,
):
"""# noqa
Get the last samples matching the specific `filter`.
Args:
filters:
Filter to match the time-series labels.
with_labels:
Include in the reply all label-value pairs representing metadata
labels of the time series.
select_labels:
Include in the reply only a subset of the key-value pair labels of a series.
latest:
Used when a time series is a compaction, reports the compacted
value of the latest possibly partial bucket
For more information: https://redis.io/commands/ts.mget/
""" # noqa
params = []
self._append_latest(params, latest)
self._append_with_labels(params, with_labels, select_labels)
params.extend(["FILTER"])
params += filters
return self.execute_command(MGET_CMD, *params)
def info(self, key: KeyT):
"""# noqa
Get information of `key`.
For more information: https://redis.io/commands/ts.info/
""" # noqa
return self.execute_command(INFO_CMD, key)
def queryindex(self, filters: List[str]):
"""# noqa
Get all time series keys matching the `filter` list.
For more information: https://redis.io/commands/ts.queryindex/
""" # noq
return self.execute_command(QUERYINDEX_CMD, *filters)
@staticmethod
def _append_uncompressed(params: List[str], uncompressed: Optional[bool]):
"""Append UNCOMPRESSED tag to params."""
if uncompressed:
params.extend(["UNCOMPRESSED"])
@staticmethod
def _append_with_labels(
params: List[str],
with_labels: Optional[bool],
select_labels: Optional[List[str]],
):
"""Append labels behavior to params."""
if with_labels and select_labels:
raise DataError(
"with_labels and select_labels cannot be provided together."
)
if with_labels:
params.extend(["WITHLABELS"])
if select_labels:
params.extend(["SELECTED_LABELS", *select_labels])
@staticmethod
def _append_groupby_reduce(
params: List[str], groupby: Optional[str], reduce: Optional[str]
):
"""Append GROUPBY REDUCE property to params."""
if groupby is not None and reduce is not None:
params.extend(["GROUPBY", groupby, "REDUCE", reduce.upper()])
@staticmethod
def _append_retention(params: List[str], retention: Optional[int]):
"""Append RETENTION property to params."""
if retention is not None:
params.extend(["RETENTION", retention])
@staticmethod
def _append_labels(params: List[str], labels: Optional[List[str]]):
"""Append LABELS property to params."""
if labels:
params.append("LABELS")
for k, v in labels.items():
params.extend([k, v])
@staticmethod
def _append_count(params: List[str], count: Optional[int]):
"""Append COUNT property to params."""
if count is not None:
params.extend(["COUNT", count])
@staticmethod
def _append_timestamp(params: List[str], timestamp: Optional[int]):
"""Append TIMESTAMP property to params."""
if timestamp is not None:
params.extend(["TIMESTAMP", timestamp])
@staticmethod
def _append_align(params: List[str], align: Optional[Union[int, str]]):
"""Append ALIGN property to params."""
if align is not None:
params.extend(["ALIGN", align])
@staticmethod
def _append_aggregation(
params: List[str],
aggregation_type: Optional[str],
bucket_size_msec: Optional[int],
):
"""Append AGGREGATION property to params."""
if aggregation_type is not None:
params.extend(["AGGREGATION", aggregation_type, bucket_size_msec])
@staticmethod
def _append_chunk_size(params: List[str], chunk_size: Optional[int]):
"""Append CHUNK_SIZE property to params."""
if chunk_size is not None:
params.extend(["CHUNK_SIZE", chunk_size])
@staticmethod
def _append_duplicate_policy(
params: List[str], command: Optional[str], duplicate_policy: Optional[str]
):
"""Append DUPLICATE_POLICY property to params on CREATE
and ON_DUPLICATE on ADD.
"""
if duplicate_policy is not None:
if command == "TS.ADD":
params.extend(["ON_DUPLICATE", duplicate_policy])
else:
params.extend(["DUPLICATE_POLICY", duplicate_policy])
@staticmethod
def _append_filer_by_ts(params: List[str], ts_list: Optional[List[int]]):
"""Append FILTER_BY_TS property to params."""
if ts_list is not None:
params.extend(["FILTER_BY_TS", *ts_list])
@staticmethod
def _append_filer_by_value(
params: List[str], min_value: Optional[int], max_value: Optional[int]
):
"""Append FILTER_BY_VALUE property to params."""
if min_value is not None and max_value is not None:
params.extend(["FILTER_BY_VALUE", min_value, max_value])
@staticmethod
def _append_latest(params: List[str], latest: Optional[bool]):
"""Append LATEST property to params."""
if latest:
params.append("LATEST")
@staticmethod
def _append_bucket_timestamp(params: List[str], bucket_timestamp: Optional[str]):
"""Append BUCKET_TIMESTAMP property to params."""
if bucket_timestamp is not None:
params.extend(["BUCKETTIMESTAMP", bucket_timestamp])
@staticmethod
def _append_empty(params: List[str], empty: Optional[bool]):
"""Append EMPTY property to params."""
if empty:
params.append("EMPTY")

View File

@@ -0,0 +1,91 @@
from ..helpers import nativestr
from .utils import list_to_dict
class TSInfo:
"""
Hold information and statistics on the time-series.
Can be created using ``tsinfo`` command
https://oss.redis.com/redistimeseries/commands/#tsinfo.
"""
rules = []
labels = []
sourceKey = None
chunk_count = None
memory_usage = None
total_samples = None
retention_msecs = None
last_time_stamp = None
first_time_stamp = None
max_samples_per_chunk = None
chunk_size = None
duplicate_policy = None
def __init__(self, args):
"""
Hold information and statistics on the time-series.
The supported params that can be passed as args:
rules:
A list of compaction rules of the time series.
sourceKey:
Key name for source time series in case the current series
is a target of a rule.
chunkCount:
Number of Memory Chunks used for the time series.
memoryUsage:
Total number of bytes allocated for the time series.
totalSamples:
Total number of samples in the time series.
labels:
A list of label-value pairs that represent the metadata
labels of the time series.
retentionTime:
Retention time, in milliseconds, for the time series.
lastTimestamp:
Last timestamp present in the time series.
firstTimestamp:
First timestamp present in the time series.
maxSamplesPerChunk:
Deprecated.
chunkSize:
Amount of memory, in bytes, allocated for data.
duplicatePolicy:
Policy that will define handling of duplicate samples.
Can read more about on
https://oss.redis.com/redistimeseries/configuration/#duplicate_policy
"""
response = dict(zip(map(nativestr, args[::2]), args[1::2]))
self.rules = response.get("rules")
self.source_key = response.get("sourceKey")
self.chunk_count = response.get("chunkCount")
self.memory_usage = response.get("memoryUsage")
self.total_samples = response.get("totalSamples")
self.labels = list_to_dict(response.get("labels"))
self.retention_msecs = response.get("retentionTime")
self.last_timestamp = response.get("lastTimestamp")
self.first_timestamp = response.get("firstTimestamp")
if "maxSamplesPerChunk" in response:
self.max_samples_per_chunk = response["maxSamplesPerChunk"]
self.chunk_size = (
self.max_samples_per_chunk * 16
) # backward compatible changes
if "chunkSize" in response:
self.chunk_size = response["chunkSize"]
if "duplicatePolicy" in response:
self.duplicate_policy = response["duplicatePolicy"]
if type(self.duplicate_policy) == bytes:
self.duplicate_policy = self.duplicate_policy.decode()
def get(self, item):
try:
return self.__getitem__(item)
except AttributeError:
return None
def __getitem__(self, item):
return getattr(self, item)

View File

@@ -0,0 +1,44 @@
from ..helpers import nativestr
def list_to_dict(aList):
return {nativestr(aList[i][0]): nativestr(aList[i][1]) for i in range(len(aList))}
def parse_range(response):
"""Parse range response. Used by TS.RANGE and TS.REVRANGE."""
return [tuple((r[0], float(r[1]))) for r in response]
def parse_m_range(response):
"""Parse multi range response. Used by TS.MRANGE and TS.MREVRANGE."""
res = []
for item in response:
res.append({nativestr(item[0]): [list_to_dict(item[1]), parse_range(item[2])]})
return sorted(res, key=lambda d: list(d.keys()))
def parse_get(response):
"""Parse get response. Used by TS.GET."""
if not response:
return None
return int(response[0]), float(response[1])
def parse_m_get(response):
"""Parse multi get response. Used by TS.MGET."""
res = []
for item in response:
if not item[2]:
res.append({nativestr(item[0]): [list_to_dict(item[1]), None, None]})
else:
res.append(
{
nativestr(item[0]): [
list_to_dict(item[1]),
int(item[2][0]),
float(item[2][1]),
]
}
)
return sorted(res, key=lambda d: list(d.keys()))