1 line
16 KiB
JSON
1 line
16 KiB
JSON
{"ast":null,"code":"const pi = Math.PI,\n tau = 2 * pi,\n epsilon = 1e-6,\n tauEpsilon = tau - epsilon;\nfunction append(strings) {\n this._ += strings[0];\n for (let i = 1, n = strings.length; i < n; ++i) {\n this._ += arguments[i] + strings[i];\n }\n}\nfunction appendRound(digits) {\n let d = Math.floor(digits);\n if (!(d >= 0)) throw new Error(`invalid digits: ${digits}`);\n if (d > 15) return append;\n const k = 10 ** d;\n return function (strings) {\n this._ += strings[0];\n for (let i = 1, n = strings.length; i < n; ++i) {\n this._ += Math.round(arguments[i] * k) / k + strings[i];\n }\n };\n}\nexport class Path {\n constructor(digits) {\n this._x0 = this._y0 =\n // start of current subpath\n this._x1 = this._y1 = null; // end of current subpath\n this._ = \"\";\n this._append = digits == null ? append : appendRound(digits);\n }\n moveTo(x, y) {\n this._append`M${this._x0 = this._x1 = +x},${this._y0 = this._y1 = +y}`;\n }\n closePath() {\n if (this._x1 !== null) {\n this._x1 = this._x0, this._y1 = this._y0;\n this._append`Z`;\n }\n }\n lineTo(x, y) {\n this._append`L${this._x1 = +x},${this._y1 = +y}`;\n }\n quadraticCurveTo(x1, y1, x, y) {\n this._append`Q${+x1},${+y1},${this._x1 = +x},${this._y1 = +y}`;\n }\n bezierCurveTo(x1, y1, x2, y2, x, y) {\n this._append`C${+x1},${+y1},${+x2},${+y2},${this._x1 = +x},${this._y1 = +y}`;\n }\n arcTo(x1, y1, x2, y2, r) {\n x1 = +x1, y1 = +y1, x2 = +x2, y2 = +y2, r = +r;\n\n // Is the radius negative? Error.\n if (r < 0) throw new Error(`negative radius: ${r}`);\n let x0 = this._x1,\n y0 = this._y1,\n x21 = x2 - x1,\n y21 = y2 - y1,\n x01 = x0 - x1,\n y01 = y0 - y1,\n l01_2 = x01 * x01 + y01 * y01;\n\n // Is this path empty? Move to (x1,y1).\n if (this._x1 === null) {\n this._append`M${this._x1 = x1},${this._y1 = y1}`;\n }\n\n // Or, is (x1,y1) coincident with (x0,y0)? Do nothing.\n else if (!(l01_2 > epsilon)) ;\n\n // Or, are (x0,y0), (x1,y1) and (x2,y2) collinear?\n // Equivalently, is (x1,y1) coincident with (x2,y2)?\n // Or, is the radius zero? Line to (x1,y1).\n else if (!(Math.abs(y01 * x21 - y21 * x01) > epsilon) || !r) {\n this._append`L${this._x1 = x1},${this._y1 = y1}`;\n }\n\n // Otherwise, draw an arc!\n else {\n let x20 = x2 - x0,\n y20 = y2 - y0,\n l21_2 = x21 * x21 + y21 * y21,\n l20_2 = x20 * x20 + y20 * y20,\n l21 = Math.sqrt(l21_2),\n l01 = Math.sqrt(l01_2),\n l = r * Math.tan((pi - Math.acos((l21_2 + l01_2 - l20_2) / (2 * l21 * l01))) / 2),\n t01 = l / l01,\n t21 = l / l21;\n\n // If the start tangent is not coincident with (x0,y0), line to.\n if (Math.abs(t01 - 1) > epsilon) {\n this._append`L${x1 + t01 * x01},${y1 + t01 * y01}`;\n }\n this._append`A${r},${r},0,0,${+(y01 * x20 > x01 * y20)},${this._x1 = x1 + t21 * x21},${this._y1 = y1 + t21 * y21}`;\n }\n }\n arc(x, y, r, a0, a1, ccw) {\n x = +x, y = +y, r = +r, ccw = !!ccw;\n\n // Is the radius negative? Error.\n if (r < 0) throw new Error(`negative radius: ${r}`);\n let dx = r * Math.cos(a0),\n dy = r * Math.sin(a0),\n x0 = x + dx,\n y0 = y + dy,\n cw = 1 ^ ccw,\n da = ccw ? a0 - a1 : a1 - a0;\n\n // Is this path empty? Move to (x0,y0).\n if (this._x1 === null) {\n this._append`M${x0},${y0}`;\n }\n\n // Or, is (x0,y0) not coincident with the previous point? Line to (x0,y0).\n else if (Math.abs(this._x1 - x0) > epsilon || Math.abs(this._y1 - y0) > epsilon) {\n this._append`L${x0},${y0}`;\n }\n\n // Is this arc empty? We’re done.\n if (!r) return;\n\n // Does the angle go the wrong way? Flip the direction.\n if (da < 0) da = da % tau + tau;\n\n // Is this a complete circle? Draw two arcs to complete the circle.\n if (da > tauEpsilon) {\n this._append`A${r},${r},0,1,${cw},${x - dx},${y - dy}A${r},${r},0,1,${cw},${this._x1 = x0},${this._y1 = y0}`;\n }\n\n // Is this arc non-empty? Draw an arc!\n else if (da > epsilon) {\n this._append`A${r},${r},0,${+(da >= pi)},${cw},${this._x1 = x + r * Math.cos(a1)},${this._y1 = y + r * Math.sin(a1)}`;\n }\n }\n rect(x, y, w, h) {\n this._append`M${this._x0 = this._x1 = +x},${this._y0 = this._y1 = +y}h${w = +w}v${+h}h${-w}Z`;\n }\n toString() {\n return this._;\n }\n}\nexport function path() {\n return new Path();\n}\n\n// Allow instanceof d3.path\npath.prototype = Path.prototype;\nexport function pathRound(digits = 3) {\n return new Path(+digits);\n}","map":{"version":3,"names":["pi","Math","PI","tau","epsilon","tauEpsilon","append","strings","_","i","n","length","arguments","appendRound","digits","d","floor","Error","k","round","Path","constructor","_x0","_y0","_x1","_y1","_append","moveTo","x","y","closePath","lineTo","quadraticCurveTo","x1","y1","bezierCurveTo","x2","y2","arcTo","r","x0","y0","x21","y21","x01","y01","l01_2","abs","x20","y20","l21_2","l20_2","l21","sqrt","l01","l","tan","acos","t01","t21","arc","a0","a1","ccw","dx","cos","dy","sin","cw","da","rect","w","h","toString","path","prototype","pathRound"],"sources":["/home/gnx/Desktop/ETB/ETB-FrontEnd/node_modules/d3-path/src/path.js"],"sourcesContent":["const pi = Math.PI,\n tau = 2 * pi,\n epsilon = 1e-6,\n tauEpsilon = tau - epsilon;\n\nfunction append(strings) {\n this._ += strings[0];\n for (let i = 1, n = strings.length; i < n; ++i) {\n this._ += arguments[i] + strings[i];\n }\n}\n\nfunction appendRound(digits) {\n let d = Math.floor(digits);\n if (!(d >= 0)) throw new Error(`invalid digits: ${digits}`);\n if (d > 15) return append;\n const k = 10 ** d;\n return function(strings) {\n this._ += strings[0];\n for (let i = 1, n = strings.length; i < n; ++i) {\n this._ += Math.round(arguments[i] * k) / k + strings[i];\n }\n };\n}\n\nexport class Path {\n constructor(digits) {\n this._x0 = this._y0 = // start of current subpath\n this._x1 = this._y1 = null; // end of current subpath\n this._ = \"\";\n this._append = digits == null ? append : appendRound(digits);\n }\n moveTo(x, y) {\n this._append`M${this._x0 = this._x1 = +x},${this._y0 = this._y1 = +y}`;\n }\n closePath() {\n if (this._x1 !== null) {\n this._x1 = this._x0, this._y1 = this._y0;\n this._append`Z`;\n }\n }\n lineTo(x, y) {\n this._append`L${this._x1 = +x},${this._y1 = +y}`;\n }\n quadraticCurveTo(x1, y1, x, y) {\n this._append`Q${+x1},${+y1},${this._x1 = +x},${this._y1 = +y}`;\n }\n bezierCurveTo(x1, y1, x2, y2, x, y) {\n this._append`C${+x1},${+y1},${+x2},${+y2},${this._x1 = +x},${this._y1 = +y}`;\n }\n arcTo(x1, y1, x2, y2, r) {\n x1 = +x1, y1 = +y1, x2 = +x2, y2 = +y2, r = +r;\n\n // Is the radius negative? Error.\n if (r < 0) throw new Error(`negative radius: ${r}`);\n\n let x0 = this._x1,\n y0 = this._y1,\n x21 = x2 - x1,\n y21 = y2 - y1,\n x01 = x0 - x1,\n y01 = y0 - y1,\n l01_2 = x01 * x01 + y01 * y01;\n\n // Is this path empty? Move to (x1,y1).\n if (this._x1 === null) {\n this._append`M${this._x1 = x1},${this._y1 = y1}`;\n }\n\n // Or, is (x1,y1) coincident with (x0,y0)? Do nothing.\n else if (!(l01_2 > epsilon));\n\n // Or, are (x0,y0), (x1,y1) and (x2,y2) collinear?\n // Equivalently, is (x1,y1) coincident with (x2,y2)?\n // Or, is the radius zero? Line to (x1,y1).\n else if (!(Math.abs(y01 * x21 - y21 * x01) > epsilon) || !r) {\n this._append`L${this._x1 = x1},${this._y1 = y1}`;\n }\n\n // Otherwise, draw an arc!\n else {\n let x20 = x2 - x0,\n y20 = y2 - y0,\n l21_2 = x21 * x21 + y21 * y21,\n l20_2 = x20 * x20 + y20 * y20,\n l21 = Math.sqrt(l21_2),\n l01 = Math.sqrt(l01_2),\n l = r * Math.tan((pi - Math.acos((l21_2 + l01_2 - l20_2) / (2 * l21 * l01))) / 2),\n t01 = l / l01,\n t21 = l / l21;\n\n // If the start tangent is not coincident with (x0,y0), line to.\n if (Math.abs(t01 - 1) > epsilon) {\n this._append`L${x1 + t01 * x01},${y1 + t01 * y01}`;\n }\n\n this._append`A${r},${r},0,0,${+(y01 * x20 > x01 * y20)},${this._x1 = x1 + t21 * x21},${this._y1 = y1 + t21 * y21}`;\n }\n }\n arc(x, y, r, a0, a1, ccw) {\n x = +x, y = +y, r = +r, ccw = !!ccw;\n\n // Is the radius negative? Error.\n if (r < 0) throw new Error(`negative radius: ${r}`);\n\n let dx = r * Math.cos(a0),\n dy = r * Math.sin(a0),\n x0 = x + dx,\n y0 = y + dy,\n cw = 1 ^ ccw,\n da = ccw ? a0 - a1 : a1 - a0;\n\n // Is this path empty? Move to (x0,y0).\n if (this._x1 === null) {\n this._append`M${x0},${y0}`;\n }\n\n // Or, is (x0,y0) not coincident with the previous point? Line to (x0,y0).\n else if (Math.abs(this._x1 - x0) > epsilon || Math.abs(this._y1 - y0) > epsilon) {\n this._append`L${x0},${y0}`;\n }\n\n // Is this arc empty? We’re done.\n if (!r) return;\n\n // Does the angle go the wrong way? Flip the direction.\n if (da < 0) da = da % tau + tau;\n\n // Is this a complete circle? Draw two arcs to complete the circle.\n if (da > tauEpsilon) {\n this._append`A${r},${r},0,1,${cw},${x - dx},${y - dy}A${r},${r},0,1,${cw},${this._x1 = x0},${this._y1 = y0}`;\n }\n\n // Is this arc non-empty? Draw an arc!\n else if (da > epsilon) {\n this._append`A${r},${r},0,${+(da >= pi)},${cw},${this._x1 = x + r * Math.cos(a1)},${this._y1 = y + r * Math.sin(a1)}`;\n }\n }\n rect(x, y, w, h) {\n this._append`M${this._x0 = this._x1 = +x},${this._y0 = this._y1 = +y}h${w = +w}v${+h}h${-w}Z`;\n }\n toString() {\n return this._;\n }\n}\n\nexport function path() {\n return new Path;\n}\n\n// Allow instanceof d3.path\npath.prototype = Path.prototype;\n\nexport function pathRound(digits = 3) {\n return new Path(+digits);\n}\n"],"mappings":"AAAA,MAAMA,EAAE,GAAGC,IAAI,CAACC,EAAE;EACdC,GAAG,GAAG,CAAC,GAAGH,EAAE;EACZI,OAAO,GAAG,IAAI;EACdC,UAAU,GAAGF,GAAG,GAAGC,OAAO;AAE9B,SAASE,MAAMA,CAACC,OAAO,EAAE;EACvB,IAAI,CAACC,CAAC,IAAID,OAAO,CAAC,CAAC,CAAC;EACpB,KAAK,IAAIE,CAAC,GAAG,CAAC,EAAEC,CAAC,GAAGH,OAAO,CAACI,MAAM,EAAEF,CAAC,GAAGC,CAAC,EAAE,EAAED,CAAC,EAAE;IAC9C,IAAI,CAACD,CAAC,IAAII,SAAS,CAACH,CAAC,CAAC,GAAGF,OAAO,CAACE,CAAC,CAAC;EACrC;AACF;AAEA,SAASI,WAAWA,CAACC,MAAM,EAAE;EAC3B,IAAIC,CAAC,GAAGd,IAAI,CAACe,KAAK,CAACF,MAAM,CAAC;EAC1B,IAAI,EAAEC,CAAC,IAAI,CAAC,CAAC,EAAE,MAAM,IAAIE,KAAK,CAAC,mBAAmBH,MAAM,EAAE,CAAC;EAC3D,IAAIC,CAAC,GAAG,EAAE,EAAE,OAAOT,MAAM;EACzB,MAAMY,CAAC,GAAG,EAAE,IAAIH,CAAC;EACjB,OAAO,UAASR,OAAO,EAAE;IACvB,IAAI,CAACC,CAAC,IAAID,OAAO,CAAC,CAAC,CAAC;IACpB,KAAK,IAAIE,CAAC,GAAG,CAAC,EAAEC,CAAC,GAAGH,OAAO,CAACI,MAAM,EAAEF,CAAC,GAAGC,CAAC,EAAE,EAAED,CAAC,EAAE;MAC9C,IAAI,CAACD,CAAC,IAAIP,IAAI,CAACkB,KAAK,CAACP,SAAS,CAACH,CAAC,CAAC,GAAGS,CAAC,CAAC,GAAGA,CAAC,GAAGX,OAAO,CAACE,CAAC,CAAC;IACzD;EACF,CAAC;AACH;AAEA,OAAO,MAAMW,IAAI,CAAC;EAChBC,WAAWA,CAACP,MAAM,EAAE;IAClB,IAAI,CAACQ,GAAG,GAAG,IAAI,CAACC,GAAG;IAAG;IACtB,IAAI,CAACC,GAAG,GAAG,IAAI,CAACC,GAAG,GAAG,IAAI,CAAC,CAAC;IAC5B,IAAI,CAACjB,CAAC,GAAG,EAAE;IACX,IAAI,CAACkB,OAAO,GAAGZ,MAAM,IAAI,IAAI,GAAGR,MAAM,GAAGO,WAAW,CAACC,MAAM,CAAC;EAC9D;EACAa,MAAMA,CAACC,CAAC,EAAEC,CAAC,EAAE;IACX,IAAI,CAACH,OAAO,IAAI,IAAI,CAACJ,GAAG,GAAG,IAAI,CAACE,GAAG,GAAG,CAACI,CAAC,IAAI,IAAI,CAACL,GAAG,GAAG,IAAI,CAACE,GAAG,GAAG,CAACI,CAAC,EAAE;EACxE;EACAC,SAASA,CAAA,EAAG;IACV,IAAI,IAAI,CAACN,GAAG,KAAK,IAAI,EAAE;MACrB,IAAI,CAACA,GAAG,GAAG,IAAI,CAACF,GAAG,EAAE,IAAI,CAACG,GAAG,GAAG,IAAI,CAACF,GAAG;MACxC,IAAI,CAACG,OAAO,GAAG;IACjB;EACF;EACAK,MAAMA,CAACH,CAAC,EAAEC,CAAC,EAAE;IACX,IAAI,CAACH,OAAO,IAAI,IAAI,CAACF,GAAG,GAAG,CAACI,CAAC,IAAI,IAAI,CAACH,GAAG,GAAG,CAACI,CAAC,EAAE;EAClD;EACAG,gBAAgBA,CAACC,EAAE,EAAEC,EAAE,EAAEN,CAAC,EAAEC,CAAC,EAAE;IAC7B,IAAI,CAACH,OAAO,IAAI,CAACO,EAAE,IAAI,CAACC,EAAE,IAAI,IAAI,CAACV,GAAG,GAAG,CAACI,CAAC,IAAI,IAAI,CAACH,GAAG,GAAG,CAACI,CAAC,EAAE;EAChE;EACAM,aAAaA,CAACF,EAAE,EAAEC,EAAE,EAAEE,EAAE,EAAEC,EAAE,EAAET,CAAC,EAAEC,CAAC,EAAE;IAClC,IAAI,CAACH,OAAO,IAAI,CAACO,EAAE,IAAI,CAACC,EAAE,IAAI,CAACE,EAAE,IAAI,CAACC,EAAE,IAAI,IAAI,CAACb,GAAG,GAAG,CAACI,CAAC,IAAI,IAAI,CAACH,GAAG,GAAG,CAACI,CAAC,EAAE;EAC9E;EACAS,KAAKA,CAACL,EAAE,EAAEC,EAAE,EAAEE,EAAE,EAAEC,EAAE,EAAEE,CAAC,EAAE;IACvBN,EAAE,GAAG,CAACA,EAAE,EAAEC,EAAE,GAAG,CAACA,EAAE,EAAEE,EAAE,GAAG,CAACA,EAAE,EAAEC,EAAE,GAAG,CAACA,EAAE,EAAEE,CAAC,GAAG,CAACA,CAAC;;IAE9C;IACA,IAAIA,CAAC,GAAG,CAAC,EAAE,MAAM,IAAItB,KAAK,CAAC,oBAAoBsB,CAAC,EAAE,CAAC;IAEnD,IAAIC,EAAE,GAAG,IAAI,CAAChB,GAAG;MACbiB,EAAE,GAAG,IAAI,CAAChB,GAAG;MACbiB,GAAG,GAAGN,EAAE,GAAGH,EAAE;MACbU,GAAG,GAAGN,EAAE,GAAGH,EAAE;MACbU,GAAG,GAAGJ,EAAE,GAAGP,EAAE;MACbY,GAAG,GAAGJ,EAAE,GAAGP,EAAE;MACbY,KAAK,GAAGF,GAAG,GAAGA,GAAG,GAAGC,GAAG,GAAGA,GAAG;;IAEjC;IACA,IAAI,IAAI,CAACrB,GAAG,KAAK,IAAI,EAAE;MACrB,IAAI,CAACE,OAAO,IAAI,IAAI,CAACF,GAAG,GAAGS,EAAE,IAAI,IAAI,CAACR,GAAG,GAAGS,EAAE,EAAE;IAClD;;IAEA;IAAA,KACK,IAAI,EAAEY,KAAK,GAAG1C,OAAO,CAAC,EAAC;;IAE5B;IACA;IACA;IAAA,KACK,IAAI,EAAEH,IAAI,CAAC8C,GAAG,CAACF,GAAG,GAAGH,GAAG,GAAGC,GAAG,GAAGC,GAAG,CAAC,GAAGxC,OAAO,CAAC,IAAI,CAACmC,CAAC,EAAE;MAC3D,IAAI,CAACb,OAAO,IAAI,IAAI,CAACF,GAAG,GAAGS,EAAE,IAAI,IAAI,CAACR,GAAG,GAAGS,EAAE,EAAE;IAClD;;IAEA;IAAA,KACK;MACH,IAAIc,GAAG,GAAGZ,EAAE,GAAGI,EAAE;QACbS,GAAG,GAAGZ,EAAE,GAAGI,EAAE;QACbS,KAAK,GAAGR,GAAG,GAAGA,GAAG,GAAGC,GAAG,GAAGA,GAAG;QAC7BQ,KAAK,GAAGH,GAAG,GAAGA,GAAG,GAAGC,GAAG,GAAGA,GAAG;QAC7BG,GAAG,GAAGnD,IAAI,CAACoD,IAAI,CAACH,KAAK,CAAC;QACtBI,GAAG,GAAGrD,IAAI,CAACoD,IAAI,CAACP,KAAK,CAAC;QACtBS,CAAC,GAAGhB,CAAC,GAAGtC,IAAI,CAACuD,GAAG,CAAC,CAACxD,EAAE,GAAGC,IAAI,CAACwD,IAAI,CAAC,CAACP,KAAK,GAAGJ,KAAK,GAAGK,KAAK,KAAK,CAAC,GAAGC,GAAG,GAAGE,GAAG,CAAC,CAAC,IAAI,CAAC,CAAC;QACjFI,GAAG,GAAGH,CAAC,GAAGD,GAAG;QACbK,GAAG,GAAGJ,CAAC,GAAGH,GAAG;;MAEjB;MACA,IAAInD,IAAI,CAAC8C,GAAG,CAACW,GAAG,GAAG,CAAC,CAAC,GAAGtD,OAAO,EAAE;QAC/B,IAAI,CAACsB,OAAO,IAAIO,EAAE,GAAGyB,GAAG,GAAGd,GAAG,IAAIV,EAAE,GAAGwB,GAAG,GAAGb,GAAG,EAAE;MACpD;MAEA,IAAI,CAACnB,OAAO,IAAIa,CAAC,IAAIA,CAAC,QAAQ,EAAEM,GAAG,GAAGG,GAAG,GAAGJ,GAAG,GAAGK,GAAG,CAAC,IAAI,IAAI,CAACzB,GAAG,GAAGS,EAAE,GAAG0B,GAAG,GAAGjB,GAAG,IAAI,IAAI,CAACjB,GAAG,GAAGS,EAAE,GAAGyB,GAAG,GAAGhB,GAAG,EAAE;IACpH;EACF;EACAiB,GAAGA,CAAChC,CAAC,EAAEC,CAAC,EAAEU,CAAC,EAAEsB,EAAE,EAAEC,EAAE,EAAEC,GAAG,EAAE;IACxBnC,CAAC,GAAG,CAACA,CAAC,EAAEC,CAAC,GAAG,CAACA,CAAC,EAAEU,CAAC,GAAG,CAACA,CAAC,EAAEwB,GAAG,GAAG,CAAC,CAACA,GAAG;;IAEnC;IACA,IAAIxB,CAAC,GAAG,CAAC,EAAE,MAAM,IAAItB,KAAK,CAAC,oBAAoBsB,CAAC,EAAE,CAAC;IAEnD,IAAIyB,EAAE,GAAGzB,CAAC,GAAGtC,IAAI,CAACgE,GAAG,CAACJ,EAAE,CAAC;MACrBK,EAAE,GAAG3B,CAAC,GAAGtC,IAAI,CAACkE,GAAG,CAACN,EAAE,CAAC;MACrBrB,EAAE,GAAGZ,CAAC,GAAGoC,EAAE;MACXvB,EAAE,GAAGZ,CAAC,GAAGqC,EAAE;MACXE,EAAE,GAAG,CAAC,GAAGL,GAAG;MACZM,EAAE,GAAGN,GAAG,GAAGF,EAAE,GAAGC,EAAE,GAAGA,EAAE,GAAGD,EAAE;;IAEhC;IACA,IAAI,IAAI,CAACrC,GAAG,KAAK,IAAI,EAAE;MACrB,IAAI,CAACE,OAAO,IAAIc,EAAE,IAAIC,EAAE,EAAE;IAC5B;;IAEA;IAAA,KACK,IAAIxC,IAAI,CAAC8C,GAAG,CAAC,IAAI,CAACvB,GAAG,GAAGgB,EAAE,CAAC,GAAGpC,OAAO,IAAIH,IAAI,CAAC8C,GAAG,CAAC,IAAI,CAACtB,GAAG,GAAGgB,EAAE,CAAC,GAAGrC,OAAO,EAAE;MAC/E,IAAI,CAACsB,OAAO,IAAIc,EAAE,IAAIC,EAAE,EAAE;IAC5B;;IAEA;IACA,IAAI,CAACF,CAAC,EAAE;;IAER;IACA,IAAI8B,EAAE,GAAG,CAAC,EAAEA,EAAE,GAAGA,EAAE,GAAGlE,GAAG,GAAGA,GAAG;;IAE/B;IACA,IAAIkE,EAAE,GAAGhE,UAAU,EAAE;MACnB,IAAI,CAACqB,OAAO,IAAIa,CAAC,IAAIA,CAAC,QAAQ6B,EAAE,IAAIxC,CAAC,GAAGoC,EAAE,IAAInC,CAAC,GAAGqC,EAAE,IAAI3B,CAAC,IAAIA,CAAC,QAAQ6B,EAAE,IAAI,IAAI,CAAC5C,GAAG,GAAGgB,EAAE,IAAI,IAAI,CAACf,GAAG,GAAGgB,EAAE,EAAE;IAC9G;;IAEA;IAAA,KACK,IAAI4B,EAAE,GAAGjE,OAAO,EAAE;MACrB,IAAI,CAACsB,OAAO,IAAIa,CAAC,IAAIA,CAAC,MAAM,EAAE8B,EAAE,IAAIrE,EAAE,CAAC,IAAIoE,EAAE,IAAI,IAAI,CAAC5C,GAAG,GAAGI,CAAC,GAAGW,CAAC,GAAGtC,IAAI,CAACgE,GAAG,CAACH,EAAE,CAAC,IAAI,IAAI,CAACrC,GAAG,GAAGI,CAAC,GAAGU,CAAC,GAAGtC,IAAI,CAACkE,GAAG,CAACL,EAAE,CAAC,EAAE;IACvH;EACF;EACAQ,IAAIA,CAAC1C,CAAC,EAAEC,CAAC,EAAE0C,CAAC,EAAEC,CAAC,EAAE;IACf,IAAI,CAAC9C,OAAO,IAAI,IAAI,CAACJ,GAAG,GAAG,IAAI,CAACE,GAAG,GAAG,CAACI,CAAC,IAAI,IAAI,CAACL,GAAG,GAAG,IAAI,CAACE,GAAG,GAAG,CAACI,CAAC,IAAI0C,CAAC,GAAG,CAACA,CAAC,IAAI,CAACC,CAAC,IAAI,CAACD,CAAC,GAAG;EAC/F;EACAE,QAAQA,CAAA,EAAG;IACT,OAAO,IAAI,CAACjE,CAAC;EACf;AACF;AAEA,OAAO,SAASkE,IAAIA,CAAA,EAAG;EACrB,OAAO,IAAItD,IAAI,CAAD,CAAC;AACjB;;AAEA;AACAsD,IAAI,CAACC,SAAS,GAAGvD,IAAI,CAACuD,SAAS;AAE/B,OAAO,SAASC,SAASA,CAAC9D,MAAM,GAAG,CAAC,EAAE;EACpC,OAAO,IAAIM,IAAI,CAAC,CAACN,MAAM,CAAC;AAC1B","ignoreList":[]},"metadata":{},"sourceType":"module","externalDependencies":[]} |